Translation is required for miRNA-dependent decay of endogenous transcripts

Posttranscriptional repression by microRNA (miRNA) occurs through transcript destabilization or translation inhibition. Whereas RNA degradation explains most miRNA-dependent repression, transcript decay occurs co-translationally, raising questions regarding the requirement of target translation to miRNA-dependent transcript destabilization. To assess the contribution of translation to miRNA-mediated RNA destabilization, we decoupled these two molecular processes by dissecting the impact of miRNA loss of function on cytosolic long noncoding RNAs (lncRNAs). We show, that despite interacting with miRNA loaded RNA-induced silencing complex (miRISC), the steady state abundance and degradation rates of these endogenously expressed non-translated transcripts are minimally impacted by miRNA loss. To validate the requirement of translation for miRNA-dependent decay, we fused a miRISC bound lncRNA, whose levels are unaffected by miRNAs, to the 3’end of a protein-coding gene reporter and show that this results in its miRNA-dependent transcript destabilization. Furthermore, analysis of the few lncRNAs whose levels are regulated by miRNAs revealed these tend to associate with translating ribosomes and are likely misannotated micropeptides, further substantiating the necessity of target translation for miRNA-dependent transcript decay. Our analyses reveal the strict requirement of translation for miRNA-dependent transcript destabilization and demonstrate that the levels of coding and noncoding transcripts are differently affected by miRNAs.

[1]  Ana Kozomara,et al.  miRBase: from microRNA sequences to function , 2018, Nucleic Acids Res..

[2]  Astrid Gall,et al.  Ensembl 2019 , 2018, Nucleic Acids Res..

[3]  Márcio A. Mourão,et al.  Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality , 2018, bioRxiv.

[4]  R. Blelloch,et al.  Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells , 2018, bioRxiv.

[5]  D. Bartel Metazoan MicroRNAs , 2018, Cell.

[6]  E. Olson,et al.  Mining for Micropeptides. , 2017, Trends in cell biology.

[7]  M. Mann,et al.  MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells , 2016, Stem cell reports.

[8]  T. Nilsen,et al.  Cotranslational microRNA mediated messenger RNA destabilization , 2016, eLife.

[9]  V. Kim,et al.  Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis , 2016, Proceedings of the National Academy of Sciences.

[10]  Y. Tomari,et al.  The Functions of MicroRNAs: mRNA Decay and Translational Repression. , 2015, Trends in cell biology.

[11]  Marco J. Morelli,et al.  INSPEcT: a computational tool to infer mRNA synthesis, processing and degradation dynamics from RNA- and 4sU-seq time course experiments , 2015, Bioinform..

[12]  E. Izaurralde,et al.  Towards a molecular understanding of microRNA-mediated gene silencing , 2015, Nature Reviews Genetics.

[13]  Caleb Webber,et al.  Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells , 2015, Genome research.

[14]  Keith W. Vance,et al.  Crosstalking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7 , 2014, Nature Structural &Molecular Biology.

[15]  Mihaela Zavolan,et al.  Identification and consequences of miRNA–target interactions — beyond repression of gene expression , 2014, Nature Reviews Genetics.

[16]  N. Sonenberg,et al.  Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1 , 2014, RNA.

[17]  E. Young,et al.  Coupling mRNA Synthesis and Decay , 2014, Molecular and Cellular Biology.

[18]  M. Zavolan,et al.  Identification and consequences of miRNA–target interactions — beyond repression of gene expression , 2014, Nature Reviews Genetics.

[19]  Howard Y. Chang,et al.  Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs , 2014, Nature Structural &Molecular Biology.

[20]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[21]  E. Izaurralde,et al.  A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. , 2014, Molecular cell.

[22]  Phillip A Sharp,et al.  Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. , 2014, Molecular cell.

[23]  Nicholas T. Ingolia,et al.  Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins , 2013, Cell.

[24]  J. Pérez-Ortín,et al.  Gene Expression Is Circular: Factors for mRNA Degradation Also Foster mRNA Synthesis , 2013, Cell.

[25]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[26]  Yue Wang,et al.  Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. , 2013, Developmental cell.

[27]  W. Filipowicz,et al.  Kinetic analysis reveals successive steps leading to miRNA‐mediated silencing in mammalian cells , 2012, EMBO reports.

[28]  N. Walter,et al.  Intracellular single molecule microscopy reveals two kinetically distinct pathways for microRNA assembly , 2012, EMBO reports.

[29]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[30]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[31]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[32]  Uwe Ohler,et al.  PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data , 2011, Genome Biology.

[33]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[34]  Y. Pilpel,et al.  Regulatory mechanisms and networks couple the different phases of gene expression. , 2011, Trends in genetics : TIG.

[35]  Manolis Kellis,et al.  PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions , 2011, Bioinform..

[36]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[37]  Grace X. Y. Zheng,et al.  Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs , 2010, Nature Structural &Molecular Biology.

[38]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[39]  J. Yates,et al.  Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. , 2009, Molecular cell.

[40]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[41]  Lan Jin,et al.  Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. , 2009, Nature structural & molecular biology.

[42]  M. Kay,et al.  The biological basis for microRNA target restriction to the 3' untranslated region in mammalian mRNAs , 2009, Nature Structural &Molecular Biology.

[43]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[44]  Elisa Izaurralde,et al.  Deadenylation is a widespread effect of miRNA regulation. , 2008, RNA.

[45]  C. Senner,et al.  Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a , 2008, Epigenetics & Chromatin.

[46]  Robert Blelloch,et al.  Embryonic Stem Cell Specific MicroRNAs Regulate the G1/S Transition and Promote Rapid Proliferation , 2008, Nature Genetics.

[47]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[48]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[49]  Shigeyuki Yokoyama,et al.  Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. , 2007, Genes & development.

[50]  J. Richter,et al.  Human let-7a miRNA blocks protein production on actively translating polyribosomes , 2006, Nature Structural &Molecular Biology.

[51]  Yang Yu,et al.  Evidence that microRNAs are associated with translating messenger RNAs in human cells , 2006, Nature Structural &Molecular Biology.

[52]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[53]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[54]  Matthias Merkenschlager,et al.  T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer , 2005, The Journal of experimental medicine.

[55]  Sylvia M. Wilson,et al.  SnoN Is a Cell Type-specific Mediator of Transforming Growth Factor-β Responses* , 2005, Journal of Biological Chemistry.

[56]  Artemis G Hatzigeorgiou,et al.  miRNP:mRNA association in polyribosomes in a human neuronal cell line. , 2004, RNA.

[57]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[58]  Gary Ruvkun,et al.  Identification of many microRNAs that copurify with polyribosomes in mammalian neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[60]  E. Moss,et al.  Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. , 2002, Developmental biology.

[61]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[62]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[63]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[64]  Keith W. Vance,et al.  Erratum: Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7 (Nature Structural and Molecular Biology (2014) 21 (955-961)) , 2015 .

[65]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[66]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[67]  Robert L. Judson,et al.  Embryonic stem cell–specific microRNAs promote induced pluripotency , 2009, Nature Biotechnology.

[68]  E. Izaurralde,et al.  P bodies: at the crossroads of post-transcriptional pathways , 2007, Nature Reviews Molecular Cell Biology.

[69]  Sylvia M. Wilson,et al.  SnoN is a cell type-specific mediator of transforming growth factor-beta responses. , 2005, The Journal of biological chemistry.