O-Minimal Invariants for Linear Loops
暂无分享,去创建一个
[1] Amir M. Ben-Amram,et al. Ranking Functions for Linear-Constraint Loops , 2012, JACM.
[2] Enric Rodríguez-Carbonell,et al. Generating all polynomial invariants in simple loops , 2007, J. Symb. Comput..
[3] Yasushige Watase,et al. Introduction to Diophantine Approximation , 2015, Formaliz. Math..
[4] T. Shorey,et al. The distance between terms of an algebraic recurrence sequence. , 1984 .
[5] Gisbert Wüstholz,et al. Logarithmic forms and group varieties. , 1993 .
[6] Bican Xia,et al. Termination of linear programs with nonlinear constraints , 2010, J. Symb. Comput..
[7] Joël Ouaknine,et al. The orbit problem in higher dimensions , 2013, STOC '13.
[8] Nicolas Halbwachs,et al. Automatic discovery of linear restraints among variables of a program , 1978, POPL.
[9] Joël Ouaknine,et al. Semialgebraic Invariant Synthesis for the Kannan-Lipton Orbit Problem , 2017, STACS.
[10] Joël Ouaknine,et al. The Polyhedron-Hitting Problem , 2014, SODA.
[11] Joël Ouaknine,et al. On the Positivity Problem for Simple Linear Recurrence Sequences, , 2013, ICALP.
[12] Thomas A. Henzinger,et al. Proving non-termination , 2008, POPL '08.
[13] Joël Ouaknine,et al. On the Complexity of the Orbit Problem , 2013, J. ACM.
[14] Terence Tao. Structure and Randomness: Pages from Year One of a Mathematical Blog , 2008 .
[15] Enric Rodríguez-Carbonell,et al. An Abstract Interpretation Approach for Automatic Generation of Polynomial Invariants , 2004, SAS.
[16] Richard J. Lipton,et al. The orbit problem is decidable , 1980, STOC '80.
[17] Joël Ouaknine,et al. Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences , 2013, ICALP.
[18] Samir Genaim,et al. On the Termination of Integer Loops , 2012, TOPL.
[19] Joël Ouaknine,et al. Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.
[20] Angus Macintyre,et al. On the decidability of the real exponential field , 1996 .
[21] Henny B. Sipma,et al. Non-linear loop invariant generation using Gröbner bases , 2004, POPL.
[22] Supratik Chakraborty. Termination Of Linear Programs , 2008 .
[23] Joel Ouaknine,et al. On Termination of Integer Linear Loops , 2015, SODA.
[24] Patrick Cousot,et al. Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming , 2005, VMCAI.
[25] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[26] Mark Braverman,et al. Termination of Integer Linear Programs , 2006, CAV.
[27] Joël Ouaknine,et al. On linear recurrence sequences and loop termination , 2015, SIGL.
[28] A. Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .
[29] Richard J. Lipton,et al. Polynomial-time algorithm for the orbit problem , 1986, JACM.
[30] Charles Steinhorn,et al. Tame Topology and O-Minimal Structures , 2008 .
[31] Henny B. Sipma,et al. Linear Invariant Generation Using Non-linear Constraint Solving , 2003, CAV.
[32] Zachary Kincaid,et al. Non-linear reasoning for invariant synthesis , 2017, Proc. ACM Program. Lang..