O-Minimal Invariants for Linear Loops

The termination analysis of linear loops plays a key role in several areas of computer science, including program verification and abstract interpretation. Such deceptively simple questions also relate to a number of deep open problems, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this paper, we introduce the class of \emph{o-minimal invariants}, which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel's conjecture.

[1]  Amir M. Ben-Amram,et al.  Ranking Functions for Linear-Constraint Loops , 2012, JACM.

[2]  Enric Rodríguez-Carbonell,et al.  Generating all polynomial invariants in simple loops , 2007, J. Symb. Comput..

[3]  Yasushige Watase,et al.  Introduction to Diophantine Approximation , 2015, Formaliz. Math..

[4]  T. Shorey,et al.  The distance between terms of an algebraic recurrence sequence. , 1984 .

[5]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[6]  Bican Xia,et al.  Termination of linear programs with nonlinear constraints , 2010, J. Symb. Comput..

[7]  Joël Ouaknine,et al.  The orbit problem in higher dimensions , 2013, STOC '13.

[8]  Nicolas Halbwachs,et al.  Automatic discovery of linear restraints among variables of a program , 1978, POPL.

[9]  Joël Ouaknine,et al.  Semialgebraic Invariant Synthesis for the Kannan-Lipton Orbit Problem , 2017, STACS.

[10]  Joël Ouaknine,et al.  The Polyhedron-Hitting Problem , 2014, SODA.

[11]  Joël Ouaknine,et al.  On the Positivity Problem for Simple Linear Recurrence Sequences, , 2013, ICALP.

[12]  Thomas A. Henzinger,et al.  Proving non-termination , 2008, POPL '08.

[13]  Joël Ouaknine,et al.  On the Complexity of the Orbit Problem , 2013, J. ACM.

[14]  Terence Tao Structure and Randomness: Pages from Year One of a Mathematical Blog , 2008 .

[15]  Enric Rodríguez-Carbonell,et al.  An Abstract Interpretation Approach for Automatic Generation of Polynomial Invariants , 2004, SAS.

[16]  Richard J. Lipton,et al.  The orbit problem is decidable , 1980, STOC '80.

[17]  Joël Ouaknine,et al.  Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences , 2013, ICALP.

[18]  Samir Genaim,et al.  On the Termination of Integer Loops , 2012, TOPL.

[19]  Joël Ouaknine,et al.  Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.

[20]  Angus Macintyre,et al.  On the decidability of the real exponential field , 1996 .

[21]  Henny B. Sipma,et al.  Non-linear loop invariant generation using Gröbner bases , 2004, POPL.

[22]  Supratik Chakraborty Termination Of Linear Programs , 2008 .

[23]  Joel Ouaknine,et al.  On Termination of Integer Linear Loops , 2015, SODA.

[24]  Patrick Cousot,et al.  Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming , 2005, VMCAI.

[25]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[26]  Mark Braverman,et al.  Termination of Integer Linear Programs , 2006, CAV.

[27]  Joël Ouaknine,et al.  On linear recurrence sequences and loop termination , 2015, SIGL.

[28]  A. Wilkie Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .

[29]  Richard J. Lipton,et al.  Polynomial-time algorithm for the orbit problem , 1986, JACM.

[30]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[31]  Henny B. Sipma,et al.  Linear Invariant Generation Using Non-linear Constraint Solving , 2003, CAV.

[32]  Zachary Kincaid,et al.  Non-linear reasoning for invariant synthesis , 2017, Proc. ACM Program. Lang..