On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography

We consider a quantum polynomial-time algorithm which solves the discrete logarithm problem for points on elliptic curves over GF (2 m ). We improve over earlier algorithms by constructing an efficient circuit for multiplying elements of binary finite fields and by representing elliptic curve points using a technique based on projective coordinates. The depth of our proposed implementation is O (m 2), which is an improvement over the previous bound of O (m 3).

[1]  Samuel A. Kutin Shor's algorithm on a nearest-neighbor machine , 2006 .

[2]  Gordon B. Agnew,et al.  An Implementation of Elliptic Curve Cryptosystems Over F2155 , 1993, IEEE J. Sel. Areas Commun..

[3]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[4]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  D. Maslov,et al.  Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite-neighbor quantum architectures , 2007 .

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  Gilles Brassard,et al.  Quantum Arithmetic on Galois Fields , 2003, quant-ph/0301163.

[8]  M. Anwar Hasan,et al.  Low complexity bit parallel architectures for polynomial basis multiplication over GF(2m) , 2004, IEEE Transactions on Computers.

[9]  Phillip Kaye Optimized quantum implementation of elliptic curve arithmetic over binary fields , 2005, Quantum Inf. Comput..

[10]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[11]  Samuel Kutin,et al.  Computation at a Distance , 2007, Chic. J. Theor. Comput. Sci..

[12]  Edoardo D. Mastrovito,et al.  VLSI Designs for Multiplication over Finite Fields GF (2m) , 1988, AAECC.

[13]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[14]  Christof Zalka,et al.  Shor's discrete logarithm quantum algorithm for elliptic curves , 2003, Quantum Inf. Comput..

[15]  Dhiraj K. Pradhan A Theory of Galois Switching Functions , 1978, IEEE Transactions on Computers.

[16]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.

[17]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[18]  R. Van Meter Fast quantum modular exponentiation (12 pages) , 2005 .

[19]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[20]  Alfred Menezes,et al.  Software Implementation of Elliptic Curve Cryptography over Binary Fields , 2000, CHES.

[21]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.