An introduction to models based on Laguerre, Kautz and other related orthonormal functions - Part II: non-linear models

This paper provides an overview of system identification using orthonormal basis function models, such as those based on Laguerre, Kautz, and generalised orthonormal basis functions. The paper is separated in two parts. The first part of the paper approached issues related with linear models and models with uncertain parameters. Now, the mathematical foundations as well as their advantages and limitations are discussed within the contexts of non-linear system identification. The discussions comprise a broad bibliographical survey of the subject and a comparative analysis involving some specific model realisations, namely, Volterra, fuzzy, and neural models within the orthonormal basis functions framework. Theoretical and practical issues regarding the identification of these non-linear models are presented and illustrated by means of two case studies.

[1]  Satish Chand,et al.  Neural network models for multi-step ahead prediction of air-fuel ratio in SI engines , 2009, Int. J. Model. Identif. Control..

[2]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[3]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[4]  Jozsef Bokor,et al.  System identification with generalized orthonormal basis functions , 1995, Autom..

[5]  Theodore W. Berger,et al.  A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs , 2000, Neural Networks.

[6]  T. E. O. Silva Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles , 1995, IEEE Trans. Autom. Control..

[7]  A. C. Tsoi,et al.  Nonlinear system identification using discrete Laguerre functions , 1996 .

[8]  Sheng Chen,et al.  Recursive hybrid algorithm for non-linear system identification using radial basis function networks , 1992 .

[9]  Ricardo J. G. B. Campello,et al.  Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions , 2007, Autom..

[10]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[11]  Roderick Murray-Smith,et al.  Extending the functional equivalence of radial basis function networks and fuzzy inference systems , 1996, IEEE Trans. Neural Networks.

[12]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[13]  Ricardo J. G. B. Campello,et al.  Exact Search Directions for Optimization of Linear and Nonlinear Models Based on Generalized Orthonormal Functions , 2009, IEEE Transactions on Automatic Control.

[14]  Paul W. Broome,et al.  Discrete Orthonormal Sequences , 1965, JACM.

[15]  Satoru Takenaka On the Orthogonal Functions and a New Formula of Interpolation , 1925 .

[16]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[17]  F.P.A. Benders,et al.  Optimality conditions for truncated Kautz series , 1996 .

[18]  Luis A. Aguirre,et al.  Nonlinearities in NARX polynomial models: representation and estimation , 2002 .

[19]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[20]  Ronald K. Pearson,et al.  Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models , 1996, Autom..

[21]  Pertti M. Mäkilä,et al.  Approximation of stable systems by laguerre filters , 1990, Autom..

[22]  Noël Tanguy,et al.  Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..

[23]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[24]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[25]  Ronald K. Pearson,et al.  Nonlinear model-based control using second-order Volterra models , 1995, Autom..

[26]  Ricardo J. G. B. Campello,et al.  GA Optimization of Generalized OBF TS Fuzzy Models with Global and Local Estimation Approaches , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[27]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[28]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[29]  Kwang Bo Cho,et al.  Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction , 1996, Fuzzy Sets Syst..

[30]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[31]  Kazuo Tanaka,et al.  Successive identification of a fuzzy model and its applications to prediction of a complex system , 1991 .

[32]  Ricardo J. G. B. Campello,et al.  An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part I: linear and uncertain models , 2011, Int. J. Model. Identif. Control..

[33]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[34]  W. Kautz Transient synthesis in the time domain , 1954 .

[35]  Guy A. Dumont,et al.  Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .

[37]  J. Guiver,et al.  State-space nonlinear process modeling : Identification and universality , 1998 .

[38]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[39]  Wagner Caradori do Amaral,et al.  CHOICE OF FREE PARAMETERS IN EXPANSIONS OF DISCRETE-TIME VOLTERRA MODELS USING KAUTZ FUNCTIONS , 2005 .

[40]  M. Sugeno,et al.  ErratumFuzzy modelling and control of multilayer incinerator , 1988 .

[41]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[42]  W. C. Amaral,et al.  CRHPC using Volterra models and orthonormal basis functions: an application to CSTR plants , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[43]  R. Pearson Discrete-time Dynamic Models , 1999 .

[44]  Xiao-Jun Zeng,et al.  Approximation theory of fuzzy systems-MIMO case , 1995, IEEE Trans. Fuzzy Syst..

[45]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[46]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[47]  David Wang,et al.  Application of orthonormal basis functions for identification of flexible-link manipulators , 2006 .

[48]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[49]  Ricardo J. G. B. Campello,et al.  Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[50]  Ricardo J. G. B. Campello,et al.  An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension , 2008, Int. J. Control.

[51]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[52]  Ricardo J. G. B. Campello,et al.  Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control , 2003 .

[53]  Ricardo J. G. B. Campello,et al.  Design of OBF-TS Fuzzy Models Based on Multiple Clustering Validity Criteria , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[54]  Xiao-Jun Zeng,et al.  Approximation theory of fuzzy systems-SISO case , 1994, IEEE Trans. Fuzzy Syst..

[55]  Ricardo J. G. B. Campello,et al.  Control of a bioprocess using orthonormal basis function fuzzy models , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[56]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[57]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[58]  Martin Pottman,et al.  Identification of non-linear processes using reciprocal multiquadric functions , 1992 .

[59]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[60]  G.H.C. Oliveira,et al.  Fuzzy models within orthonormal basis function framework , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[61]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[62]  Osvaldo Agamennoni,et al.  Approximate models for nonlinear dynamical systems and their generalization properties , 2001 .

[63]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[64]  Aarne Halme,et al.  Modeling of chromatographic separation process with Wiener-MLP representation , 2001 .

[65]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[66]  T. McAvoy,et al.  Integration of multilayer perceptron networks and linear dynamic models : a Hammerstein modeling approach , 1993 .

[67]  Noël Tanguy,et al.  Pertinent choice of parameters for discrete Kautz approximation , 2002, IEEE Trans. Autom. Control..

[68]  O. Nelles Nonlinear System Identification , 2001 .

[69]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[70]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[71]  Vincent Wertz,et al.  Fuzzy Logic, Identification and Predictive Control , 2004 .

[72]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[73]  Alfredo C. Desages,et al.  Approximate models for nonlinear process control , 1996 .

[74]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .