In-situ determination of the kinetics and mechanisms of nickel adsorption by nanocrystalline vernadite

[1]  J. Peña,et al.  Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(ii) and Pb(ii) sorption by δ-MnO2 and ferrihydrite. , 2016, Environmental science. Processes & impacts.

[2]  S. Gaboreau,et al.  Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance , 2016, Journal of applied crystallography.

[3]  T. Kuhn,et al.  Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean , 2015 .

[4]  F. Warmont,et al.  Cryptomelane formation from nanocrystalline vernadite precursor: a high energy X-ray scattering and transmission electron microscopy perspective on reaction mechanisms , 2015, Geochemical Transactions.

[5]  G. Sposito,et al.  Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles using nickel(II) , 2015 .

[6]  Jonathan P. Wright,et al.  The fast azimuthal integration Python library: pyFAI , 2015, Journal of applied crystallography.

[7]  G. Sposito,et al.  Copper sorption by the edge surfaces of synthetic birnessite nanoparticles , 2015 .

[8]  F. Warmont,et al.  Alteration of nanocrystalline calcium silicate hydrate (C-S-H) at pH 9.2 and room temperature: a combined mineralogical and chemical study , 2015, Mineralogical Magazine.

[9]  J. Greneche,et al.  A novel and easy chemical-clock synthesis of nanocrystalline iron-cobalt bearing layered double hydroxides. , 2014, Journal of colloid and interface science.

[10]  A. Manceau,et al.  Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule , 2014 .

[11]  S. Grangeon,et al.  Solid-state transformation of nanocrystalline phyllomanganate into tectomanganate: influence of initial layer and interlayer structure. , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[12]  J. Bargar,et al.  Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona. , 2014, Environmental science & technology.

[13]  M. Marcus,et al.  Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering , 2013 .

[14]  Simon J. L. Billinge,et al.  PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.

[15]  A. Manceau,et al.  Zn sorption modifies dynamically the layer and interlayer structure of vernadite , 2012 .

[16]  C. Peacock,et al.  Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates , 2012 .

[17]  P. Heaney,et al.  Kinetic analysis of cation exchange in birnessite using time-resolved synchrotron X-ray diffraction , 2011 .

[18]  A. Manceau,et al.  Structure of nanocrystalline phyllomanganates produced by freshwater fungi , 2010 .

[19]  D. Sparks,et al.  Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction. , 2010, Environmental science & technology.

[20]  J. Peña Mechanisms of nickel sorption by a bacteriogenic birnessite , 2010 .

[21]  C. Peacock Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates , 2009 .

[22]  P. Heaney,et al.  Cs-exchange in birnessite: Reaction mechanisms inferred from time-resolved X-ray diffraction and transmission electron microscopy , 2009 .

[23]  J. Bargar Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ , 2009 .

[24]  A. Manceau,et al.  Crystal structure of Ni-sorbed synthetic vernadite: a powder X-ray diffraction study , 2008, Mineralogical Magazine.

[25]  M. Marcus,et al.  Formation of Zn-Ca phyllomanganate nanoparticles in grass roots , 2008 .

[26]  Dayong Wang,et al.  Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny. , 2008, Environmental pollution.

[27]  N. Geoffroy,et al.  Formation of todorokite from vernadite in Ni-rich hemipelagic sediments , 2007 .

[28]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  C. Peacock,et al.  Crystal-chemistry of Ni in marine ferromanganese crusts and nodules , 2007 .

[30]  B. Lanson,et al.  Birnessite polytype systematics and identiÞ cation by powder X-ray diffraction , 2007 .

[31]  M. Malati,et al.  Adsorption from aqueous solution by δ-manganese dioxide II. Adsorption of some heavy metal cations , 2007 .

[32]  M. Marcus,et al.  Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal , 2007 .

[33]  C. Peacock,et al.  Sorption of Ni by birnessite: Equilibrium controls on Ni in seawater , 2007 .

[34]  M. Marcus,et al.  Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides , 2007 .

[35]  Jerrnpy E. Posr,et al.  Crystal structure determinations of synthetic sodium , magnesium , and potassium birnessite using TEM and the Rietveld method , 2007 .

[36]  N. Geoffroy,et al.  Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction , 2007 .

[37]  Vrcron A. Dnrrsr,et al.  Structural mechanism of Co 2 * oxidation by the phyllomanganate buserite , 2007 .

[38]  G. Sposito,et al.  Structural model for the biogenic Mn oxide produced by Pseudomonas putida , 2006 .

[39]  B. Tebo,et al.  Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1 , 2005 .

[40]  K. Poeppelmeier,et al.  Characterization of the Manganese Oxide Produced by Pseudomonas Putida Strain MnB1 , 2004 .

[41]  Nicolas Geoffroy,et al.  Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction , 2004 .

[42]  Karen J. Murray,et al.  Biogenic manganese oxides: Properties and mechanisms of formation , 2004 .

[43]  M. Marcus,et al.  Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule , 2004 .

[44]  James W. Murray,et al.  Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model , 2004 .

[45]  Rajeev,et al.  Adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide from simple (1-1) electrolyte solutions. , 2004, Journal of colloid and interface science.

[46]  L. Weng,et al.  Understanding the effects of soil characteristics on phytotoxicity and bioavailability of nickel using speciation models. , 2004, Environmental science & technology.

[47]  B. Theng,et al.  Biogeochemistry of manganese oxide coatings on pebble surfaces in the Kikukawa River System, Shizuoka, Japan , 2003 .

[48]  B. J. Alloway,et al.  An inventory of heavy metals inputs to agricultural soils in England and Wales. , 2003, The Science of the total environment.

[49]  K. Salnikow,et al.  Nickel carcinogenesis. , 1968, Mutation research.

[50]  Nicolas Geoffroy,et al.  Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. , 2003, Environmental science & technology.

[51]  Q. Feng,et al.  Structure of synthetic Na-birnessite: Evidence for a triclinic one-layer unit cell , 2002 .

[52]  A. Manceau,et al.  Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction , 2002 .

[53]  E. H. Carlo,et al.  Ferromanganese Nodules and Crusts from the Christmas Island Region, Indian Ocean , 2002 .

[54]  A. Plançon CALCIPOW: a program for calculating the diffraction by disordered lamellar structures , 2002 .

[55]  W. Gates,et al.  Site occupancies by iron in nontronites , 2002 .

[56]  C. Koch Determination of core structure periodicity and point defect density along dislocations , 2002 .

[57]  D. Sparks,et al.  Temperature Effects on Nickel Sorption Kinetics at the Mineral–Water Interface , 2001 .

[58]  A. Bellanca,et al.  Trace metal partitioning in Fe–Mn nodules from Sicilian soils, Italy , 2001 .

[59]  A. Manceau,et al.  Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH , 2000 .

[60]  J. Hazemann,et al.  QUANTITATIVE ZN SPECIATION IN SMELTER-CONTAMINATED SOILS BY EXAFS SPECTROSCOPY , 2000 .

[61]  A. Manceau,et al.  Structural mechanism of Co2+ oxidation by the phyllomanganate buserite , 1997 .

[62]  A. Koschinsky,et al.  Sequential leaching of marine ferromanganese precipitates: Genetic implications , 1995 .

[63]  Thomas A. Cahill,et al.  Manganese-rich rock varnish does occur in Antarctica , 1992 .

[64]  S. Emerson,et al.  Oxidation of manganese by spores of a marine bacillus: Kinetic and thermodynamic considerations , 1986 .

[65]  V. Drits,et al.  CRYSTAL STRUCTURE OF BIRNESSITE FROM THE PACIFIC OCEAN , 1985 .

[66]  T. Oberlander,et al.  Microbial Origin of Desert Varnish , 1981, Science.

[67]  R. Giovanoli Vernadite is random-stacked birnessite , 1980 .

[68]  George R. Rossman,et al.  The manganese- and iron-oxide mineralogy of desert varnish , 1979 .

[69]  M. Malati,et al.  The point of zero charge of manganese dioxides , 1978 .

[70]  E. D. Glover Characterization of a marine birnessite , 1977 .

[71]  Edward D. Goldberg,et al.  Marine Geochemistry 1. Chemical Scavengers of the Sea , 1954, The Journal of Geology.