Multiscale asymptotic method of optimal control on the boundary for heat equations of composite materials

In this paper, we study the optimal control on the boundary for parabolic equations with rapidly oscillating coefficients arising from the heat transfer problems and the optimal control on the boundary of composite materials or porous media. The multiscale asymptotic expansion of the solution for the problem in the case without any constraints is presented. We derive the proofs of all convergence results. © 2008 Elsevier Inc. All rights reserved.

[1]  Jean-Pierre Puel,et al.  Approximate controllability of the semilinear heat equation , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Jason J. Sharples,et al.  Linear and quasilinear parabolic equations in Sobolev space , 2004 .

[3]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[4]  H. Zoubairi Optimal control and homogenization in a mixture of uids separated by a rapidly oscillating interface , 2002 .

[5]  E. Bonnetier,et al.  INFLUENCE OF DISTORTION IN THE HOMOGENIZATION OF FIBER-REINFORCED COMPOSITES , 2006 .

[6]  P. Donato,et al.  An introduction to homogenization , 2000 .

[7]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[8]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[9]  Carlos Conca,et al.  A semilinear control problem involving homogenization , 2001 .

[10]  Jacques-Louis Lions,et al.  Some methode [i.e. methods] in the mathematical analysis of systems and their control , 1981 .

[11]  J. L. Lions,et al.  INTRODUCTION TO “REMARKS ON THE THEORY OF OPTIMAL CONTROL OF DISTRIBUTED SYSTEMS” , 1977 .

[12]  M. Primicerio,et al.  MODELING AND HOMOGENIZING A PROBLEM OF ABSORPTION/DESORPTION IN POROUS MEDIA , 2006 .

[13]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[14]  Carlos Conca,et al.  Homogenization of a Transmission Problem in Solid Mechanics , 1999 .

[15]  Axel Osses,et al.  On the controllability of the Laplace equation observed on an interior curve , 1998 .

[16]  S. Kesavan,et al.  Homogenization of an Optimal Control Problem , 1997 .

[17]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[18]  S. Kesavan,et al.  Optimal Control on Perforated Domains , 1999 .

[19]  Jun-zhi Cui,et al.  Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains , 2004, Numerische Mathematik.

[20]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[21]  Li-qun Cao ASYMPTOTIC EXPANSION AND CONVERGENCE THEOREM OF CONTROL AND OBSERVATION ON THE BOUNDARY FOR SECOND-ORDER ELLIPTIC EQUATION WITH HIGHLY OSCILLATORY COEFFICIENTS , 2004 .

[22]  Patrizia Donato,et al.  Homogénéisation et contrôlabilité approchée de l'équation de la chaleur dans des domaines perforés , 1997 .