A new dual mortar method for curved interfaces: 2D elasticity

Dual mortar method formulations have shown to be a very effective and efficient way for interfacing (e.g. tying, contacting) dissimilar meshes. On the other hand, we have recently found that they can sometimes perform quite poorly when applied to curved surfaces in some solid mechanics applications. A new modified two-dimensional dual mortar method for piecewise linear finite elements is developed that overcomes this deficiency and is demonstrated on a model problem. Furthermore, mathematical analysis is provided to demonstrate the optimal convergence and stability of the new method. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[2]  David J. Benson,et al.  Sliding interfaces with contact-impact in large-scale Lagrangian computations , 1985 .

[3]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[4]  C. Felippa,et al.  A simple algorithm for localized construction of non‐matching structural interfaces , 2002 .

[5]  M. Puso,et al.  A 3D contact smoothing method using Gregory patches , 2002 .

[6]  Padmanabhan Seshaiyer,et al.  hp submeshing via non-conforming finite element methods , 2000 .

[7]  Michael A. Puso,et al.  A 3D mortar method for solid mechanics , 2004 .

[8]  T. Belytschko,et al.  A monolithic smoothing‐gap algorithm for contact‐impact based on the signed distance function , 2002 .

[9]  Mohammad A. Aminpour,et al.  A coupled analysis method for structures with independently modelled finite element subdomains , 1995 .

[10]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[11]  Daniel Rixen,et al.  A two-step, two-field hybrid method for the static and dynamic analysis of substructure problems with conforming and non-conforming interfaces , 1998 .

[12]  Jens Markus Melenk,et al.  Mortar methods with curved interfaces , 2005 .

[13]  Barbara Wohlmuth A COMPARISON OF DUAL LAGRANGE MULTIPLIER SPACES FOR MORTAR FINITE ELEMENT DISCRETIZATIONS , 2002 .

[14]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[15]  Clark R. Dohrmann,et al.  Methods for connecting dissimilar three-dimensional finite element meshes , 2000 .

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  Martin W. Heinstein,et al.  Consistent mesh tying methods for topologically distinct discretized surfaces in non‐linear solid mechanics , 2003 .

[18]  Faker Ben Belgacem,et al.  The mortar finite element method for contact problems , 1998 .

[19]  P. Wriggers,et al.  On Smooth Finite Element Discretizations for Frictional Contact Problems , 2000 .

[20]  Todd Arbogast,et al.  A non-mortar mixed finite element method for elliptic problems on non-matching multiblock grids☆ , 1997 .

[21]  Patrick Hild,et al.  Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .

[22]  J. C. Simo,et al.  A perturbed Lagrangian formulation for the finite element solution of contact problems , 1985 .