Glucose activation by transient Cr2+ dimers.

By combining in situ X-ray absorption spectroscopy, DFT calculations and kinetic measurements we demonstrate that the unique ability of CrCl2 in ionic liquid media to catalyze glucose dehydration to 5-hydroxymethylfurfural relates to the transient self-organization of Cr2+ dimers, which promotes the isomerization of glucose to fructose. The molecular details of the active site environment during the rate controlling step resemble those in hexose isomerase enzymes.

[1]  George W. Huber,et al.  The critical role of heterogeneous catalysis in lignocellulosic biomass conversion , 2009 .

[2]  James J. Danford,et al.  Poly[1-ethyl-3-methylimidazolium [tri-μ-chlorido-chromate(II)]] , 2009, Acta crystallographica. Section E, Structure reports online.

[3]  Joseph B. Binder,et al.  Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. , 2009, Journal of the American Chemical Society.

[4]  J. Ying,et al.  Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. , 2008, Angewandte Chemie.

[5]  F. d’Acapito,et al.  Reactivity of Cr Species Grafted on SiO2/Si(100) Surface: A Reflection Extended X-ray Absorption Fine Structure Study down to the Submonolayer Regime , 2007 .

[6]  Juben Nemchand Chheda,et al.  Katalytische Flüssigphasenumwandlung oxygenierter Kohlenwasserstoffe aus Biomasse zu Treibstoffen und Rohstoffen für die Chemiewirtschaft , 2007 .

[7]  G. Huber,et al.  Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. , 2007, Angewandte Chemie.

[8]  Paul J. Dauenhauer,et al.  Chemical engineering: Hybrid routes to biofuels , 2007, Nature.

[9]  Johnathan E. Holladay,et al.  Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural , 2007, Science.

[10]  A. Beale,et al.  Dichloromethane as a selective modifying agent to create a family of highly reactive chromium polymerization sites. , 2007, Angewandte Chemie.

[11]  Yuriy Román-Leshkov,et al.  Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose , 2006, Science.

[12]  B. Weckhuysen,et al.  Controlled assembly of a heterogeneous single-site ethylene trimerization catalyst as probed by X-ray absorption spectroscopy. , 2006, Chemistry.

[13]  Z. C. Zhang,et al.  Catalysis in Ionic Liquids , 2006 .

[14]  E. Snell,et al.  A quasi-Laue neutron crystallographic study of d-xylose isomerase , 2006, European Biophysics Journal.

[15]  G. Huber,et al.  Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates , 2005, Science.

[16]  C. Lamberti,et al.  The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. , 2005, Chemical reviews.

[17]  G. Petsko,et al.  Xylose isomerase in substrate and inhibitor michaelis States: atomic resolution studies of a metal-mediated hydride shift(,). , 2004 .

[18]  D. Truhlar,et al.  Quantum dynamics of hydride transfer catalyzed by bimetallic electrophilic catalysis: synchronous motion of Mg(2+) and H(-) in xylose isomerase. , 2002, Journal of the American Chemical Society.

[19]  X. He,et al.  Novel enzymatic mechanisms in carbohydrate metabolism. , 2000, Chemical reviews.

[20]  F. Cotton,et al.  Experimental and theoretical study of a paradigm Jahn-Teller molecule, all-trans-CrCl2(H2O)2(pyridine)2, and the related trans-CrCl2(pyridine)4·acetone , 1995 .

[21]  R. Köhn Reactivity of chromium complexes under spin control. , 2008, Angewandte Chemie.

[22]  R. D. Köhn Reaktivität von Chromkomplexen unter Spinkontrolle , 2008 .

[23]  P. Várnai,et al.  Quantum Mechanical Study of the Hydride Shift Step in the Xylose Isomerase Catalytic Reaction with the Fragment Self-Consistent Field Method , 1999 .