Computational super-resolution microscopy: leveraging noise model, regularization and sparsity to achieve highest resolution

We report progress in algorithm development for a computation-based super-resolution microscopy technique. Building upon previous results, we examine our recently implemented microscope system and construct alter- native processing algorithms. Based on numerical simulations results, we evaluate the performance of each algorithm and determine the one most suitable for our super-resolution microscope.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  Mario Bertero,et al.  Super-resolution by data inversion , 1996 .

[3]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[4]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[5]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[6]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[7]  Oleg V. Michailovich,et al.  Regularized Richardson-Lucy Algorithm for Sparse Reconstruction of Poissonian Images , 2010, ArXiv.

[8]  A. V. Schaik,et al.  L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve) , 2012 .

[9]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[10]  B. Hunt,et al.  Analysis of the limit to superresolution in incoherent imaging , 1993 .

[11]  J. Skilling,et al.  Maximum entropy signal processing in practical NMR spectroscopy , 1984, Nature.

[12]  J. Janesick,et al.  Charge-Coupled-Device Charge-Collection Efficiency And The Photon-Transfer Technique , 1987 .

[13]  Edwin L. Bradley,et al.  The Equivalence of Maximum Likelihood and Weighted Least Squares Estimates in the Exponential Family , 1973 .

[14]  J. Goodman Introduction to Fourier optics , 1969 .

[15]  P Boccacci,et al.  Super-resolution in computational imaging. , 2003, Micron.

[16]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[17]  Mario Bertero,et al.  Resolution in Diffraction-limited Imaging, a Singular Value Analysis: III. The Effect of Sampling an , 1982 .

[18]  Mario Bertero,et al.  Super-resolution in confocal scanning microscopy: II. The incoherent case , 1989 .

[19]  Characterizing Digital Cameras with the Photon Transfer Curve , 2002 .

[20]  M. Bertero,et al.  Linear inverse problems with discrete data: II. Stability and regularisation , 1988 .

[21]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[22]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[23]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[24]  ProblemsPer Christian HansenDepartment The L-curve and its use in the numerical treatment of inverse problems , 2000 .

[25]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[26]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[27]  S.M. Riad,et al.  The deconvolution problem: An overview , 1986, Proceedings of the IEEE.

[28]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .