Secreted factors induced by PKC modulators do not indirectly cause HIV latency reversal

[1]  Jocelyn T. Kim,et al.  Latency reversal plus natural killer cells diminish HIV reservoir in vivo , 2022, Nature communications.

[2]  M. Ouellet,et al.  Bryostatin-1 Decreases HIV-1 Infection and Viral Production in Human Primary Macrophages , 2021, Journal of virology.

[3]  Y. Yeh,et al.  Shock-and-kill versus block-and-lock: Targeting the fluctuating and heterogeneous HIV-1 gene expression , 2021, Proceedings of the National Academy of Sciences.

[4]  Jocelyn T. Kim,et al.  Tracking HIV Rebound following Latency Reversal Using Barcoded HIV , 2020, Cell reports. Medicine.

[5]  Jocelyn T. Kim,et al.  Pharmacological Activation of Non-canonical NF-κB Signaling Activates Latent HIV-1 Reservoirs In Vivo , 2020, Cell reports. Medicine.

[6]  T. Chun,et al.  Prodrugs of PKC modulators show enhanced HIV latency reversal and an expanded therapeutic window , 2020, Proceedings of the National Academy of Sciences.

[7]  Wen-Xing Li,et al.  Novel pathways of HIV latency reactivation revealed by integrated analysis of transcriptome and target profile of bryostatin , 2020, Scientific Reports.

[8]  B. Liao,et al.  Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo , 2020, Nature.

[9]  D. Hazuda,et al.  Differentiation into an Effector Memory Phenotype Potentiates HIV-1 Latency Reversal in CD4+ T Cells , 2019, Journal of Virology.

[10]  K. Metzner,et al.  Determinants of HIV-1 reservoir size and long-term dynamics during suppressive ART , 2019, Nature Communications.

[11]  S. Migueles,et al.  Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion , 2019, Nature Communications.

[12]  M. Marsden,et al.  Characterization of designed, synthetically accessible bryostatin analog HIV latency reversing agents , 2018, Virology.

[13]  R. Siliciano,et al.  Targeting the Latent Reservoir for HIV‐1 , 2018, Immunity.

[14]  A. Spivak,et al.  Novel Latency Reversal Agents for HIV-1 Cure. , 2018, Annual review of medicine.

[15]  Jana K. Maclaren,et al.  Scalable synthesis of bryostatin 1 and analogs, adjuvant leads against latent HIV , 2017, Science.

[16]  T. Chun,et al.  In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell "kick" and "kill" in strategy for virus eradication , 2017, PLoS pathogens.

[17]  G. Marshall,et al.  Combinations of isoform-targeted histone deacetylase inhibitors and bryostatin analogues display remarkable potency to activate latent HIV without global T-cell activation , 2017, Scientific Reports.

[18]  A. Spivak,et al.  Benzotriazoles Reactivate Latent HIV-1 through Inactivation of STAT5 SUMOylation , 2017, Cell reports.

[19]  R. Siliciano,et al.  Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques , 2016, AIDS.

[20]  Ron Wakkary,et al.  Integration , 2016, Interactions.

[21]  Daniel I. S. Rosenbloom,et al.  Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. , 2015, The Journal of clinical investigation.

[22]  G. Jiang,et al.  Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. , 2015, AIDS research and human retroviruses.

[23]  D. Margolis,et al.  Eradicating HIV-1 infection: seeking to clear a persistent pathogen , 2014, Nature Reviews Microbiology.

[24]  S. Deeks,et al.  Immunologic strategies for HIV-1 remission and eradication , 2014, Science.

[25]  Robert F. Siliciano,et al.  Novel ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo , 2014, Nature Medicine.

[26]  D. Margolis,et al.  Emerging strategies to deplete the HIV reservoir , 2014, Current opinion in infectious diseases.

[27]  P. Kollar,et al.  Marine natural products: Bryostatins in preclinical and clinical studies , 2014, Pharmaceutical biology.

[28]  M. Marsden,et al.  HIV/AIDS eradication. , 2013, Bioorganic & medicinal chemistry letters.

[29]  V. Kuchroo,et al.  IL-12 family cytokines: immunological playmakers , 2012, Nature Immunology.

[30]  M. Marsden,et al.  Designed, Synthetically Accessible Bryostatin Analogues Potently Induce Activation of Latent HIV Reservoirs in vitro , 2012, Nature chemistry.

[31]  J. Kulkosky,et al.  Protein Kinase C: One Pathway towards the Eradication of Latent HIV-1 Reservoirs , 2012, Advances in virology.

[32]  J. Blay,et al.  Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells. , 2011, Cancer research.

[33]  M. Nagarkatti,et al.  Bryostatin Modulates Latent HIV-1 Infection via PKC and AMPK Signaling but Inhibits Acute Infection in a Receptor Independent Manner , 2010, PloS one.

[34]  J. Steinke,et al.  Immunologic messenger molecules: cytokines, interferons, and chemokines. , 2010, The Journal of allergy and clinical immunology.

[35]  R. Siliciano,et al.  Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells , 2003, Nature Medicine.

[36]  E. Verdin,et al.  HIV reproducibly establishes a latent infection after acute infection of T cells in vitro , 2003, The EMBO journal.

[37]  Y. Korin,et al.  Interleukin-7 Induces Expression of Latent Human Immunodeficiency Virus Type 1 with Minimal Effects on T-Cell Phenotype , 2002, Journal of Virology.

[38]  R. Siliciano,et al.  The challenge of viral reservoirs in HIV-1 infection. , 2002, Annual review of medicine.

[39]  A. Jordan,et al.  The site of HIV‐1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation , 2001, The EMBO journal.

[40]  R. Berlinck,et al.  Marine organisms as a source of new anticancer agents. , 2001, The Lancet. Oncology.

[41]  M. Dybul,et al.  Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy , 1999, Nature Medicine.

[42]  J. Lisziewicz,et al.  Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy , 1999, Nature Medicine.

[43]  A. Finnegan,et al.  Interleukin-10 enhances tumor necrosis factor-alpha activation of HIV-1 transcription in latently infected T cells. , 1998, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association.

[44]  Anthony S. Fauci,et al.  Induction of HIV-1 Replication in Latently Infected CD4+ T Cells Using a Combination of Cytokines , 1998, The Journal of experimental medicine.

[45]  C. Van Lint,et al.  Mutations in the tat Gene Are Responsible for Human Immunodeficiency Virus Type 1 Postintegration Latency in the U1 Cell Line , 1998, Journal of Virology.

[46]  P. Galanaud,et al.  Cytokines and chemokines in HIV infection: implications for therapy. , 1998, International reviews of immunology.

[47]  M A Nowak,et al.  Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Richman,et al.  Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. , 1997, Science.

[49]  R Brookmeyer,et al.  Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. , 1997, Science.

[50]  P. Leder,et al.  Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia , 1996, Nature Medicine.

[51]  S. Arya,et al.  Identification of RANTES, MIP-1α, and MIP-1β as the Major HIV-Suppressive Factors Produced by CD8+ T Cells , 1995, Science.

[52]  G. Cordero [HIV infection]. , 1995, SIDAhora : un proyecto del Departamento de Publicaciones del PWA Coalition, NY.

[53]  J. Justement,et al.  Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and post-transcriptional mechanisms , 1990, The Journal of experimental medicine.

[54]  J. Justement,et al.  Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. , 1987, Science.

[55]  D. Markovitz,et al.  The role of mononuclear phagocytes in HTLV-III/LAV infection. , 1986, Science.