Subtracting a best rank-1 approximation does not necessarily decrease tensor rank
暂无分享,去创建一个
[1] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[2] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[3] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[4] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[5] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .
[6] Joseph JáJá. Optimal Evaluation of Pairs of Bilinear Forms , 1978, STOC.
[7] V. Strassen. Rank and optimal computation of generic tensors , 1983 .
[8] G. Rota,et al. The invariant theory of binary forms , 1984 .
[9] J. Leeuw,et al. Explicit candecomp/parafac solutions for a contrived 2 × 2 × 2 array of rank three , 1988 .
[10] J. Kruskal. Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .
[11] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[12] Pierre Comon,et al. Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..
[13] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[14] Pierre Comon,et al. Blind channel identification and extraction of more sources than sensors , 1998, Optics & Photonics.
[15] J. Berge,et al. Simplicity of core arrays in three-way principal component analysis and the typical rank of p×q×2 arrays , 1999 .
[16] J. Vandewalle,et al. An introduction to independent component analysis , 2000 .
[17] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[18] Nikos D. Sidiropoulos,et al. Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..
[19] Nikos D. Sidiropoulos,et al. Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..
[20] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[21] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[22] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[23] J. Berge,et al. Typical rank and indscal dimensionality for symmetric three-way arrays of order I×2×2 or I×3×3 , 2004 .
[24] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[25] Liqun Qi,et al. Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..
[26] A. Stegeman. Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher , 2006 .
[27] A. Stegeman. Degeneracy in Candecomp/Parafac and Indscal Explained For Several Three-Sliced Arrays With A Two-Valued Typical Rank , 2007, Psychometrika.
[28] Lieven De Lathauwer,et al. Tensor-based techniques for the blind separation of DS-CDMA signals , 2007, Signal Process..
[29] Yiju Wang,et al. On the best rank-1 approximation to higher-order symmetric tensors , 2007, Math. Comput. Model..
[30] A. Stegeman,et al. On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .
[31] André Lima Férrer de Almeida,et al. PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization , 2007, Signal Process..
[32] Alwin Stegeman,et al. Low-Rank Approximation of Generic p˟q˟2 Arrays and Diverging Components in the Candecomp/Parafac Model , 2008, SIAM J. Matrix Anal. Appl..
[33] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[34] A. Stegeman,et al. On the Non-Existence of Optimal Solutions and the Occurrence of “Degeneracy” in the CANDECOMP/PARAFAC Model , 2008, Psychometrika.
[35] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[36] P. Kroonenberg. Wiley Series in Probability and Statistics , 2008 .
[37] Lieven De Lathauwer,et al. A Method to Avoid Diverging Components in the Candecomp/Parafac Model for Generic I˟J˟2 Arrays , 2008, SIAM J. Matrix Anal. Appl..
[38] P. Kroonenberg. Applied Multiway Data Analysis , 2008 .
[39] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..