Free energy computation of particles with membrane-mediated interactions via Langevin dynamics

We apply well-established concepts of Langevin sampling to derive a new class of algorithms for the efficient computation of free energy differences of fluctuating particles embedded in a 'fast' membrane, i.e., a membrane that instantaneously adapts to varying particle positions. A geometric potential accounting for membrane-mediated particle interaction is derived in the framework of variational hybrid models for particles in membranes. Recent explicit representations of the gradient of the geometric interaction potential allows to apply well-known gradient based Markov Chain Monte-Carlo (MCDC) methods such as Langevin-based sampling.

[1]  Roland R. Netz Inclusions in Fluctuating Membranes: Exact Results , 1997 .

[2]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[3]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[4]  M. Parrinello,et al.  Accurate sampling using Langevin dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Reinhard Lipowsky,et al.  Budding of membranes induced by intramembrane domains , 1992 .

[6]  Grace Brannigan,et al.  A Model for Lipid Bilayers in Implicit Solvent , 2008 .

[7]  Charles M. Elliott,et al.  Second order splitting for a class of fourth order equations , 2017, Math. Comput..

[8]  C. Misbah,et al.  Elastic interaction of point defects on biological membranes , 2002, The European physical journal. E, Soft matter.

[9]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[10]  Paul Dommersnes,et al.  Casimir and mean-field interactions between membrane inclusions subject to external torques , 1999 .

[11]  P. Atzberger,et al.  Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes. , 2016, Soft matter.

[12]  Mohamed Laradji,et al.  Coarse-Grained Computer Simulations of Multicomponent Lipid Membranes , 2011 .

[13]  Andrew M. Stuart,et al.  A Multiscale Analysis of Diffusions on Rapidly Varying Surfaces , 2013, J. Nonlinear Sci..

[14]  J. Fournier,et al.  Elastic interaction between "hard" or "soft" pointwise inclusions on biological membranes , 2003, The European physical journal. E, Soft matter.

[15]  Carsten Hartmann,et al.  Free energy computation by controlled Langevin dynamics , 2010, ICCS.

[16]  Fachbereich Physik,et al.  Interaction of conical membrane inclusions: Effect of lateral tension , 1998 .

[17]  Charles M. Elliott,et al.  A Variational Approach to Particles in Lipid Membranes , 2015, 1512.02375.

[18]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[19]  Assyr Abdulle,et al.  High Order Numerical Approximation of the Invariant Measure of Ergodic SDEs , 2014, SIAM J. Numer. Anal..

[20]  Mark Goulian,et al.  Long-Range Forces in Heterogeneous Fluid Membranes , 1993 .

[21]  Joachim O. Rädler,et al.  MEMBRANE MEDIATED ATTRACTION AND ORDERED AGGREGATION OF COLLOIDAL PARTICLES BOUND TO GIANT PHOSPHOLIPID VESICLES , 1999 .

[22]  Jaime Agudo-Canalejo,et al.  Wrapping of nanoparticles by membranes. , 2014, Advances in colloid and interface science.

[23]  Nicolas Destainville,et al.  Attractive asymmetric inclusions in elastic membranes under tension: cluster phases and membrane invaginations , 2013, 1307.7914.

[24]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[25]  Carsten Graser,et al.  Discretization error estimates for penalty formulations of a linearized Canham-Helfrich type energy , 2017, 1703.06688.

[26]  G. Roberts,et al.  Fast Langevin based algorithm for MCMC in high dimensions , 2015, 1507.02166.

[27]  N. Gov,et al.  Membrane undulations driven by force fluctuations of active proteins. , 2004, Physical review letters.

[28]  Marissa G. Saunders,et al.  Coarse-graining methods for computational biology. , 2013, Annual review of biophysics.

[29]  Yonatan Schweitzer,et al.  A Model for Shaping Membrane Sheets by Protein Scaffolds. , 2015, Biophysical journal.

[30]  Gabriel Stoltz,et al.  Langevin dynamics with constraints and computation of free energy differences , 2010, Math. Comput..

[31]  Zun-Jing Wang,et al.  A Systematically Coarse-Grained Solvent-Free Model for Quantitative Phospholipid Bilayer Simulations , 2012, The journal of physical chemistry. B.

[32]  G. Oster,et al.  Curvature-mediated interactions between membrane proteins. , 1998, Biophysical journal.

[33]  Carsten Graser,et al.  On differentiability of the membrane-mediated mechanical interaction energy of discrete–continuum membrane–particle models , 2017, Interfaces and Free Boundaries.

[34]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Volker Haucke,et al.  Membrane remodeling in clathrin-mediated endocytosis , 2018, Journal of Cell Science.

[36]  Paul J Atzberger,et al.  Hybrid elastic and discrete-particle approach to biomembrane dynamics with application to the mobility of curved integral membrane proteins. , 2009, Physical review letters.

[37]  P. Dommersnes,et al.  The many-body problem for anisotropic membrane inclusions and the self-assembly of "saddle" defects into an "egg carton". , 2002, Biophysical journal.

[38]  B. Leimkuhler,et al.  Robust and efficient configurational molecular sampling via Langevin dynamics. , 2013, The Journal of chemical physics.

[39]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[40]  Gregory A. Voth,et al.  Membrane tension controls the assembly of curvature-generating proteins , 2015, Nature Communications.

[41]  Tobias Kies Gradient Methods for Membrane-Mediated Particle Interactions , 2019 .

[42]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .