Multi-level Compressed Sensing Petrov-Galerkin discretization of high-dimensional parametric PDEs

We analyze a novel multi-level version of a recently introduced compressed sensing (CS) Petrov-Galerkin (PG) method from [H. Rauhut and Ch. Schwab: Compressive Sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations, Math. Comp. 304(2017) 661-700] for the solution of many-parametric partial differential equations. We propose to use multi-level PG discretizations, based on a hierarchy of nested finite dimensional subspaces, and to reconstruct parametric solutions at each level from level-dependent random samples of the high-dimensional parameter space via CS methods such as weighted l1-minimization. For affine parametric, linear operator equations, we prove that our approach allows to approximate the parametric solution with (almost) optimal convergence order as specified by certain summability properties of the coefficient sequence in a general polynomial chaos expansion of the parametric solution and by the convergence order of the PG discretization in the physical variables. The computations of the parameter samples of the PDE solution is "embarrassingly parallel", as in Monte-Carlo Methods. Contrary to other recent approaches, and as already noted in [A. Doostan and H. Owhadi: A non-adapted sparse approximation of PDEs with stochastic inputs. JCP 230(2011) 3015-3034] the optimality of the computed approximations does not require a-priori assumptions on ordering and structure of the index sets of the largest gpc coefficients (such as the "downward closed" property). We prove that under certain assumptions work versus accuracy of the new algorithms is asymptotically equal to that of one PG solve for the corresponding nominal problem on the finest discretization level up to a constant.

[1]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[2]  Massimo Fornasier,et al.  Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints , 2008, SIAM J. Numer. Anal..

[3]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[4]  Simona Perotto,et al.  Compressed solving: A numerical approximation technique for elliptic PDEs based on Compressed Sensing , 2015, Comput. Math. Appl..

[5]  Hoang Tran,et al.  Polynomial approximation via compressed sensing of high-dimensional functions on lower sets , 2016, Math. Comput..

[6]  Fabio Nobile,et al.  Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..

[7]  Oded Regev,et al.  The Restricted Isometry Property of Subsampled Fourier Matrices , 2015, SODA.

[8]  Albert Cohen,et al.  Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients , 2015, 1509.07045.

[9]  J. Bourgain An Improved Estimate in the Restricted Isometry Problem , 2014 .

[10]  H. Rauhut,et al.  Interpolation via weighted $l_1$ minimization , 2013, 1308.0759.

[11]  Josef Dick,et al.  Multi-level higher order QMC Galerkin discretization for affine parametric operator equations , 2014, 1406.4432.

[12]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[13]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[14]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[15]  S. Foucart,et al.  Hard thresholding pursuit algorithms: Number of iterations ☆ , 2016 .

[16]  Ben Adcock,et al.  Infinite-dimensional $\ell^1$ minimization and function approximation from pointwise data , 2015, 1503.02352.

[17]  P. Revesz Interpolation and Approximation , 2010 .

[18]  Yonina C. Eldar,et al.  Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.

[19]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[20]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[21]  Holger Rauhut,et al.  Compressed sensing Petrov-Galerkin approximations for parametric PDEs , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[22]  Christoph Schwab,et al.  Sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .

[23]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[24]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[25]  Albert Cohen,et al.  High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2013, Foundations of Computational Mathematics.

[26]  Fabio Nobile,et al.  Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.

[27]  Albert Cohen,et al.  Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .

[28]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[29]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[30]  Claude Jeffrey Gittelson,et al.  Adaptive wavelet methods for elliptic partial differential equations with random operators , 2014, Numerische Mathematik.

[31]  Frances Y. Kuo,et al.  Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..

[32]  Jason Jo,et al.  Iterative Hard Thresholding for Weighted Sparse Approximation , 2013, ArXiv.

[33]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[34]  Simona Perotto,et al.  A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems , 2017, Math. Comput..

[35]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[36]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[37]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[38]  Rachel Ward,et al.  Compressed Sensing With Cross Validation , 2008, IEEE Transactions on Information Theory.

[39]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[40]  Stefan Heinrich,et al.  Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..

[41]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[42]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[43]  Christoph Schwab,et al.  Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs , 2013 .

[44]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[45]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[46]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[47]  C. Schwab,et al.  Sparsity in Bayesian inversion of parametric operator equations , 2014 .

[48]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[49]  Holger Rauhut,et al.  Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations , 2014, Math. Comput..

[50]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2014 .

[51]  Claude Jeffrey Gittelson,et al.  A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes , 2013 .

[52]  Gary Tang,et al.  Subsampled Gauss Quadrature Nodes for Estimating Polynomial Chaos Expansions , 2014, SIAM/ASA J. Uncertain. Quantification.

[53]  Siddhartha Mishra,et al.  Multi-Level Monte Carlo Finite Volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium , 2014 .