Analysis and Design of an Ultralow-Power CMOS Relaxation Oscillator

This paper presents the design of a low-voltage ultralow-power relaxation oscillator without external components. The application field for this oscillator is the clock generation of low-power wake-up functions for battery-operated systems. A detailed analysis of the oscillator, including the temperature performance, is derived and verified with experimental results. The oscillator operates at a typical frequency of 3.3 kHz and consumes 11 nW from a 1-V supply at room temperature, and a temperature drift of less than 500 ppm/°C is achieved over the temperature range of -20°C to 80°C. An efficient design implementation has resulted in a cell area of 0.1 mm2 in a standard 0.35- μm digital CMOS technology.

[1]  G. Van der Plas,et al.  Modeling and experimental verification of substrate coupling and isolation techniques in mixed-signal ICs on a lightly-doped substrate , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005..

[2]  Ming-Dou Ker,et al.  Design of Mixed-Voltage-Tolerant Crystal Oscillator Circuit in Low-Voltage CMOS Technology , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Yannis Tsividis,et al.  Operation and Modeling of the Mos Transistor (The Oxford Series in Electrical and Computer Engineering) , 2004 .

[4]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[5]  K. Makinwa,et al.  A low-voltage mobility-based frequency reference for crystal-less ULP radios , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[6]  Michael S. McCorquodale,et al.  A 25-MHz Self-Referenced Solid-State Frequency Source Suitable for XO-Replacement , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  R. Puers,et al.  Ultra-Low-Power Interface Chip for Autonomous Capacitive Sensor Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Yong Lian,et al.  A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip , 2009, IEEE Journal of Solid-State Circuits.

[9]  Tapas Nandy,et al.  Programmable high frequency RC oscillator , 2005, 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design.

[10]  Carlos Galup-Montoro,et al.  A 2-nW 1.1-V self-biased current reference in CMOS technology , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  S. Takagi,et al.  Quantitative understanding of inversion-layer capacitance in Si MOSFET's , 1995 .

[12]  Fabio Pellizzer,et al.  A new model of gate capacitance as a simple tool to extract MOS parameters , 2001 .

[13]  Carlos Galup-Montoro,et al.  Temperature performance of sub-1V ultra-low power current sources , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[14]  Masao Hotta,et al.  Measurement of digital noise in mixed-signal integrated circuits , 1995 .

[15]  L. Wong,et al.  A very low power CMOS mixed-signal IC for implantable pacemaker applications , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[16]  Juha Kostamovaara,et al.  A 1.2-V CMOS $RC$ Oscillator for Capacitive and Resistive Sensor Applications , 2008, IEEE Transactions on Instrumentation and Measurement.

[17]  Christofer Toumazou,et al.  Nanopower Subthreshold MCML in Submicrometer CMOS Technology , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  A. Flammini,et al.  Sensor Signal Processing for Autonomous Wireless Sensors , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[19]  Eric A. Vittoz,et al.  High-performance crystal oscillator circuits: theory and application , 1988 .

[20]  J. Fellrath,et al.  CMOS analog integrated circuits based on weak inversion operations , 1977 .

[21]  B. Schaffer,et al.  Ultra low-power monolithically integrated, capacitive pressure sensor for tire pressure monitoring , 2004, Proceedings of IEEE Sensors, 2004..

[22]  M. P. Flynn,et al.  A 1.2- mu m CMOS current-controlled oscillator , 1992 .

[23]  Michiel Steyaert,et al.  A 66 $\mu$ W 86 ppm$/^{\circ}$ C Fully-Integrated 6 MHz Wienbridge Oscillator With a 172 dB Phase Noise FOM , 2009, IEEE Journal of Solid-State Circuits.

[24]  Wu Nanjian,et al.  A novel ultra low power temperature sensor for UHF RFID tag chip , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[25]  Mohammed Ismail,et al.  A very low frequency, micropower, low voltage CMOS oscillator for noncardiac pacemakers , 1995 .

[26]  H. Oguey,et al.  CMOS Current Reference without Resistance , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[27]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[28]  Michiel Steyaert,et al.  Erratum to "A 66 µW 86 ppm°C Fully-Integrated 6 MHz Wienbridge Oscillator With a 172 dB Phase Noise FOM" [Jul 09 1990-2001] , 2009, IEEE J. Solid State Circuits.

[29]  I. Filanovsky,et al.  Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits , 2001 .

[30]  Giuseppe de Vita,et al.  Low-Voltage Low-Power CMOS Oscillator with Low Temperature and Process Sensitivity , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[31]  Young-Hyun Jun,et al.  CMOS temperature sensor with ring oscillator for mobile DRAM self-refresh control , 2007, Microelectron. J..