Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes

Jun Zhu1, Xinghui Zhong2, Chi-Wang Shu3 and Jianxian Qiu4,∗ 1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China. 2 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA. 3 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. 4 School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, Fujian 361005, P.R. China.

[1]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[2]  Jianxian Qiu,et al.  Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter , 2016 .

[3]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[4]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[5]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[6]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[7]  Chi-Wang Shu,et al.  A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods , 2013, J. Comput. Phys..

[8]  Jun Zhu,et al.  Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes , 2013, J. Comput. Phys..

[9]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[10]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[11]  Chi-Wang Shu,et al.  A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters , 2005, SIAM J. Sci. Comput..

[12]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[13]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[14]  Lilia Krivodonova,et al.  High-order accurate implementation of solid wall boundary conditions in curved geometries , 2006 .

[15]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[16]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: General Approach and Stability , 2008 .

[17]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[18]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[19]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[20]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[21]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[22]  Rainald Löhner,et al.  A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..

[23]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[24]  V. P. Korobeinikov,et al.  Problems of point-blast theory , 1991 .

[25]  Philip L. Roe,et al.  Robust Euler codes , 1997 .

[26]  Pierre Sagaut,et al.  A problem-independent limiter for high-order Runge—Kutta discontinuous Galerkin methods , 2001 .

[27]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[28]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[29]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[30]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[31]  Ben Q. Li Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer , 2005 .

[32]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[33]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[34]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[35]  Rainald Löhner,et al.  On the computation of steady‐state compressible flows using a discontinuous Galerkin method , 2008 .

[36]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .