Measurement of relevant elastic and damping material properties in sandwich thick-plates

An easy-to-implement method to measure relevant elastic and damping properties of the constituents of a sandwich structure, possibly with a heterogeneous core, is proposed. The method makes use of a one-point dynamical measurement on a thick plate. The hysteretic model for each (possibly orthotropic) constituent is written generically as “E(1 + j�)” for all mechanical parameters. The estimation method of the parameters relies on a mixed experimental / numerical procedure. The frequencies and dampings of the natural modes of the plate are obtained from experimental impulse responses by means of a high-resolution modal analysis technique. This allows for considerably more experimental data to be used. Numerical modes (frequencies, dampings, and modal shapes) are computed by means of an extended Rayleigh-Ritz procedure under the “light damping” hypothesis, for given values of the mechanical parameters. Minimising the differences between the modal characteristics yields an estimation of the values of the mechanical parameters describing the hysteretic behaviour. A sensitivity analysis assess the reliability of th e method for each parameter. Validations of the method are proposed by (a) applying it to virtual plates on which a finite-element model replaces the experimental modal analy sis, (b) some comparisons with results obtained by static mechanical measurements, and (c) by comparing the results on different plates made of the same sandwich material.

[1]  José Herskovits,et al.  Estimation of piezoelastic and viscoelastic properties in laminated structures , 2009 .

[2]  Baoqiao Guo,et al.  An alternative to modal analysis for material stiffness and damping identification from vibrating plates , 2010 .

[3]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[4]  Ward Heylen,et al.  Handling uncertainties in mixed numerical-experimental techniques for vibration based material identification , 2006 .

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  Mohamed Ichchou,et al.  Identification of effective sandwich structural properties via an inverse wave approach , 2008 .

[7]  C. M. Mota Soares,et al.  Identification of material properties of composite plate specimens , 1993 .

[8]  Renato Barbieri,et al.  Parameters estimation of sandwich beam model with rigid polyurethane foam core , 2010 .

[9]  Joël Cugnoni,et al.  Inverse method based on modal analysis for characterizing the constitutive properties of thick composite plates , 2007 .

[10]  Per S. Frederiksen,et al.  Parameter uncertainty and design of optimal experiments for the estimation of elastic constants , 1998 .

[11]  Jean Piranda,et al.  Application of model updating techniques in dynamics for the identification of elastic constants of composite materials , 1999 .

[12]  Mohamed Ichchou,et al.  Piano soundboard: structural behavior, numerical and experimental study in the modal range , 2003 .

[13]  Conor D. Johnson,et al.  Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers , 1981 .

[14]  Andris Chate,et al.  Determination of elastic constants of glass/epoxy unidirectional laminates by the vibration testing of plates , 1999 .

[15]  A. Chaigne,et al.  Time-domain simulation of damped impacted plates. I. Theory and experiments. , 2001, The Journal of the Acoustical Society of America.

[16]  Fernando Cortés,et al.  An approximate numerical method for the complex eigenproblem in systems characterised by a structural damping matrix , 2006 .

[17]  A. Araújo,et al.  Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data , 1996 .

[18]  J. Woodhouse,et al.  On measuring the elastic and damping constants of orthotropic sheet materials , 1988 .

[19]  Grigori Muravskii,et al.  On frequency independent damping , 2004 .

[20]  Emmanuel Ayorinde,et al.  On the elastic characterization of composite plates with vibration data , 2005 .

[21]  K. G. Muthurajan,et al.  Evaluation of elastic constants of specially orthotropic plates through vibration testing , 2004 .

[22]  Peter J. Torvik,et al.  Modifications to the Method of Modal Strain Energy for Improved Estimates of Loss Factors for Damped Structures , 2007 .

[23]  Suong V. Hoa,et al.  A vibration method for measuring mechanical properties of composite, theory and experiment , 1997 .

[24]  Per S. Frederiksen,et al.  Experimental Procedure and Results for the Identification of Elastic Constants of Thick Orthotropic Plates , 1997 .

[25]  M. Géradin,et al.  Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .

[26]  Marc Rébillat,et al.  Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices , 2011 .

[27]  Fernando A. Rochinha,et al.  Numerical and Experimental Approach for Identifying Elastic Parameters in Sandwich Plates , 2002 .

[28]  W. P. De Wilde,et al.  Identification of the damping properties of orthotropic composite materials using a mixed numerical experimental method , 1997 .

[29]  S. Hwang,et al.  Determination of elastic constants of materials by vibration testing , 2000 .

[30]  F. Moussu,et al.  Determination of Elastic Constants of Orthotropic Plates By A Modal Analysis/Method of Superposition , 1993 .

[31]  José Herskovits,et al.  Combined numerical-experimental model for the identification of mechanical properties of laminated structures , 2000 .

[32]  Victor Birman,et al.  On the Choice of Shear Correction Factor in Sandwich Structures , 2000, Mechanics of Sandwich Structures.

[33]  Joël Cugnoni,et al.  Identification of the elastic and damping properties in sandwich structures with a low core-to-skin stiffness ratio , 2011 .

[34]  Emmanuel Ayorinde,et al.  Design of test specimens for the determination of elastic through-thickness shear properties of thick composites from measured modal vibration frequencies , 2001 .

[35]  Y. Surrel,et al.  DIRECT IDENTIFICATION OF ELASTIC CONSTANTS OF ANISOTROPIC PLATES BY MODAL ANALYSIS: EXPERIMENTAL RESULTS , 1998 .

[36]  R. Bhat Natural frequencies of rectangular plates using characteristic orthogonal polynomials in rayleigh-ritz method , 1986 .

[37]  Ahmed K. Noor,et al.  Assessment of continuum models for sandwich panel honeycomb cores , 1997 .

[38]  C. Wallace Radiation Resistance of a Rectangular Panel , 1972 .

[39]  E. Pagnacco,et al.  Inverse strategies for the identification of elastic and viscoelastic material parameters using full-field measurements , 2007 .

[40]  T. Pritz,et al.  FREQUENCY DEPENDENCES OF COMPLEX MODULI AND COMPLEX POISSON'S RATIO OF REAL SOLID MATERIALS , 1998 .

[41]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[42]  William L. Cleghorn,et al.  Free flexural vibration analysis of symmetric honeycomb panels , 2005 .

[43]  Jim Woodhouse,et al.  The vibration damping of laminated plates , 1997 .

[44]  C. M. Mota Soares,et al.  Visco-piezo-elastic parameter estimation in laminated plate structures , 2009 .

[45]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[46]  Joël Cugnoni,et al.  Numerical-experimental identification of the elastic and damping properties in composite plates , 2009 .

[47]  Jun-Sik Kim,et al.  Free vibration of laminated and sandwich plates using enhanced plate theories , 2007 .

[48]  Romain Hennequin,et al.  Prediction of Harmonic Distortion Generated by Electro-Dynamic Loudspeakers Using Cascade of Hammerstein Models , 2010 .

[49]  Per S. Frederiksen,et al.  APPLICATION OF AN IMPROVED MODEL FOR THE IDENTIFICATION OF MATERIAL PARAMETERS , 1997 .

[50]  P. Remington Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies (3rd Edition) , 2005 .

[51]  Qunli Liu,et al.  Natural frequency analysis of a sandwich panel with soft core based on a refined shear deformation model , 2006 .

[52]  Hugo Sol,et al.  Material parameter identification of sandwich beams by an inverse method , 2006 .

[53]  Kerem Ege,et al.  High-resolution modal analysis , 2009, 0909.0885.

[54]  Sumio Okuno,et al.  Parameter Identification of Aluminum Honeycomb Sandwich Panels Based on Orthotropic Timoshenko`s Beam Theory , 1997 .

[55]  W. Marsden I and J , 2012 .

[56]  Joël Cugnoni,et al.  Identification by modal analysis of composite structures modelled with FSDT and HSDT laminated shell finite elements , 2004 .

[57]  K. Ip,et al.  Parameter estimation of orthotropic plates by Bayesian sensitivity analysis , 1996 .

[58]  H. Herman A Structural Materials: Properties, Microstructure and Processing. , 1995 .

[59]  L. Cremer,et al.  Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies , 1973 .

[60]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[61]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[62]  A. C. Nilsson,et al.  PREDICTION AND MEASUREMENT OF SOME DYNAMIC PROPERTIES OF SANDWICH STRUCTURES WITH HONEYCOMB AND FOAM CORES , 2002 .

[63]  Roland Badeau,et al.  A new perturbation analysis for signal enumeration in rotational invariance techniques , 2006, IEEE Transactions on Signal Processing.

[64]  Ronald F. Gibson,et al.  Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh-Ritz technique , 1988 .

[65]  E. Ayorinde,et al.  Elastic Constants of Thick Orthotropic Composite Plates , 1995 .

[66]  Per S. Frederiksen,et al.  Numerical studies for the identification of orthotropic elastic constants of thick plates , 1997 .

[67]  Jose Herskovits,et al.  Characterisation by Inverse Techniques of Elastic, Viscoelastic and Piezoelectric Properties of Anisotropic Sandwich Adaptive Structures , 2010 .

[68]  Eduards Skuķis,et al.  Characterisation of Viscoelastic Layers in Sandwich Panels via an Inverse Technique , 2009 .

[69]  J. Laroche The use of the matrix pencil method for the spectrum analysis of musical signals , 1993 .