Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here, we report efficient mixed tin–lead iodide low-bandgap (∼1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700–900 nm, delivering a short-circuit current density of over 29 mA cm−2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskite solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current–voltage hysteresis. When mechanically stacked with a ∼1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%. All-perovskite tandem solar cells hold the promise of high efficiencies whilst safeguarding the ease of fabrication intrinsic to perovskites. Here, Zhao et al. present a certified 17% efficient tin and lead perovskite solar cell, which is integrated as the low-bandgap component of a tandem device with 21% efficiency.

[1]  Cheng Zhang,et al.  An Ultrathin, Smooth, and Low‐Loss Al‐Doped Ag Film and Its Application as a Transparent Electrode in Organic Photovoltaics , 2014, Advanced materials.

[2]  Zhenhua Yu,et al.  Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells , 2016 .

[3]  J. Chen,et al.  Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. , 2016, ChemSusChem.

[4]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[5]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[6]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[7]  Seong Sik Shin,et al.  Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF₂-Pyrazine Complex. , 2016, Journal of the American Chemical Society.

[8]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[9]  Zhengshan J. Yu,et al.  Efficient Semitransparent Perovskite Solar Cells for 23.0%‐Efficiency Perovskite/Silicon Four‐Terminal Tandem Cells , 2016 .

[10]  Jay B. Patel,et al.  Efficient perovskite solar cells by metal ion doping , 2016 .

[11]  Fan Zuo,et al.  Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[12]  Kai Zhu,et al.  Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers , 2016 .

[13]  Ziran Zhao,et al.  50% Sn‐Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6% , 2016 .

[14]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[15]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[16]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[17]  Christophe Ballif,et al.  Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells , 2016 .

[18]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[19]  Yanfa Yan,et al.  Lead‐Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22% , 2016, Advanced materials.

[20]  Zanatta,et al.  Absorption edge, band tails, and disorder of amorphous semiconductors. , 1996, Physical review. B, Condensed matter.

[21]  Zhengshan Yu,et al.  Selecting tandem partners for silicon solar cells , 2016, Nature Energy.

[22]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[23]  P. Mcnamara A Theoretical Review , 1974 .

[24]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[25]  Shane Johnson,et al.  Temperature dependence of the Urbach edge in GaAs , 1995 .

[26]  M. Kanatzidis,et al.  Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3. , 2015, The journal of physical chemistry letters.

[27]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[28]  M. Grätzel,et al.  Optical analysis of CH3NH3SnxPb1–xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ta04840d Click here for additional data file. , 2016, Journal of materials chemistry. A.

[29]  Xiao Wei Sun,et al.  Optimization of inverted tandem organic solar cells , 2011 .

[30]  W. Choy,et al.  Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO3/MoO3 multilayer as the interconnecting layer. , 2016, Nanoscale.

[31]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[32]  A. Tiwari,et al.  High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration , 2016, Nature Energy.

[33]  R. Friend,et al.  Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges. , 2014, The journal of physical chemistry letters.

[34]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[35]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[36]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[37]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[38]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[39]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[40]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[41]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[42]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[43]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[44]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[45]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.