A Flatfile for the KiK-net Database Processed Using an Automated Protocol

The Kiban-Kyoshin network (KiK-net) database is an important resource for ground motion (GM) studies. The processing of the KiK-net records is a necessary first step to enable their use in engineering applications. In this manuscript we present a step-by-step automated protocol used to systematically process about 157,000 KiK-net strong ground motion records. The automated protocol includes the selection of the corner frequency for high-pass filtering. In addition, a comprehensive set of metadata was compiled for each record. As a part of the metadata collection, two algorithms were used to identify dependent and independent earthquakes. Earthquakes are also classified into active crustal or subduction type events; most of the GM records correspond to subduction type earthquakes. A flatfile with all the metadata and the spectral acceleration of the processed records is uploaded to NEEShub (https://nees.org/resources/7849, Dawood et al. 2014).

[1]  Douglas A. Wiens,et al.  The Flinn-Engdahl Regionalisation Scheme: The 1995 revision , 1996 .

[2]  A. G. Brady,et al.  BAP basic strong-motion accelerogram processing software version 1.0 , 1992 .

[3]  J. Bommer,et al.  A strong-motion database from the Peru–Chile subduction zone , 2011 .

[4]  David J. Wald,et al.  A Global Earthquake Discrimination Scheme to Optimize Ground‐Motion Prediction Equation Selection , 2012 .

[5]  Eiichi Fukuyama,et al.  Performance test of an automated moment tensor determination system for the future “Tokai” earthquake , 2000 .

[6]  David J. Wald,et al.  Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: Higher‐order functional fits , 2009 .

[7]  Leon Knopoff,et al.  Higher Seismic Activity During Local Night on the Raw Worldwide Earthquake Catalogue , 1972 .

[8]  L. Knopoff,et al.  Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? , 1974, Bulletin of the Seismological Society of America.

[9]  Polat Gülkan,et al.  The recently compiled Turkish strong motion database: preliminary investigation for seismological parameters , 2010 .

[10]  Jiancang Zhuang,et al.  Basic Models of Seismicity: Temporal Models , 2012 .

[11]  K. Campbell,et al.  NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s , 2008 .

[12]  Charles S. Mueller,et al.  Documentation for the 2008 update of the United States National Seismic Hazard Maps , 2008 .

[13]  David M. Boore,et al.  Using Pad‐Stripped Acausally Filtered Strong‐Motion Data , 2012 .

[14]  N. Abrahamson,et al.  Summary of the Abrahamson & Silva NGA Ground-Motion Relations , 2008 .

[15]  Ilya Zaliapin,et al.  Clustering analysis of seismicity and aftershock identification. , 2007, Physical review letters.

[16]  David J. Wald,et al.  Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori– a probabilistic approach , 2009 .

[17]  Frank Scherbaum,et al.  On the Discrepancy of Recent European Ground-Motion Observations and Predictions from Empirical Models: Analysis of KiK-net Accelerometric Data and Point-Sources Stochastic Simulations , 2008 .

[18]  BrianS-J. Chiou,et al.  An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra , 2008 .

[19]  H. Thio,et al.  Attenuation Relations of Strong Ground Motion in Japan Using Site Classification Based on Predominant Period , 2006 .

[20]  L. Luzi,et al.  Reference database for seismic ground-motion in Europe (RESORCE) , 2014, Bulletin of Earthquake Engineering.

[21]  William Hung Kan Lee,et al.  International handbook of earthquake and engineering seismology , 2002 .

[22]  Hiromitsu Nakamura,et al.  Deployment of New Strong Motion Seismographs of K-NET and KiK-net , 2011 .

[23]  Julian J. Bommer,et al.  Processing of strong-motion accelerograms: needs, options and consequences , 2005 .

[24]  David M. Boore,et al.  Comments on Baseline Correction of Digital Strong-Motion Data: Examples from the 1999 Hector Mine, California, Earthquake , 2002 .

[25]  Yusuf Bayrak,et al.  Spatial variations of precursory seismic quiescence observed in recent years in the eastern part of Turkey , 2012, Acta Geophysica.

[26]  G. Molchan,et al.  Aftershock identification: methods and new approaches , 1992 .

[27]  Haitham Mohamed Mahmoud Mousad Dawood,et al.  Partitioning Uncertainty for Non-Ergodic Probabilistic Seismic Hazard Analyses , 2014 .

[28]  Y. Fukushima,et al.  Scaling relations for strong ground motion prediction models with M2 terms , 1996, Bulletin of the Seismological Society of America.

[29]  J. Brune Tectonic stress and the spectra of seismic shear waves from earthquakes , 1970 .

[30]  Guillaume Pousse Analyse des données accélérométriques de K-net et Kik-net : implications pour la prédiction du mouvement sismique - accélérogrammes et spectres de réponse - et la prise en compte des effets de site non-linéaire. , 2005 .

[31]  Dino Bindi,et al.  Spectral Analysis of K-NET and KiK-net Data in Japan, Part I: Database Compilation and Peculiarities , 2011 .

[32]  T. Ohmachi,et al.  Ground Motion Characteristics Estimated from Spectral Ratio between Horizontal and Verticcl Components of Mietremors. , 1997 .

[33]  D. Marsan,et al.  Extending Earthquakes' Reach Through Cascading , 2008, Science.

[34]  Douglas A. Wiens,et al.  Preface The flinn-engdahl regionalisation scheme: The 1995 revision , 1996 .

[35]  Mizuho Ishida,et al.  Automated Seismic Moment Tensor Determination by Using On-line Broadband Seismic Waveforms , 1998 .

[36]  D. Wells,et al.  New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement , 1994, Bulletin of the Seismological Society of America.

[37]  Sreevalsa Kolathayar,et al.  Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches , 2012, Natural Hazards.

[38]  J. Bommer,et al.  A strong-motion database from the Central American subduction zone , 2011 .

[39]  G. Atkinson,et al.  Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01 s and 10.0 s , 2008 .

[40]  David M. Boore,et al.  On Pads and Filters: Processing Strong-Motion Data , 2005 .

[41]  R. Paolucci,et al.  Italian strong motion records in ITACA: overview and record processing , 2011 .

[42]  D. Vere-Jones,et al.  Stochastic Declustering of Space-Time Earthquake Occurrences , 2002 .

[43]  J. Arthur Snoke,et al.  85.12 FOCMEC: FOCal MEChanism determinations , 2003 .

[44]  J. Bommer,et al.  Influence of long‐period filter cut‐off on elastic spectral displacements , 2006 .

[45]  David J. Wald,et al.  Slab1.0: A three‐dimensional model of global subduction zone geometries , 2012 .

[46]  Kuo-Wan Lin,et al.  An Atlas of ShakeMaps for Selected Global Earthquakes , 2013 .

[47]  Haitham M. Dawood,et al.  A Method for Including Path Effects in Ground‐Motion Prediction Equations: An Example Using the Mw 9.0 Tohoku Earthquake Aftershocks , 2013 .

[48]  Hiroyuki Fujiwara,et al.  Recent Progress of Seismic Observation Networks in Japan , 2004 .

[49]  Andrew J. Michael,et al.  Community online resource for statistical seismicity analysis , 2011 .

[50]  P. Bird An updated digital model of plate boundaries , 2003 .

[51]  P. Reasenberg Second‐order moment of central California seismicity, 1969–1982 , 1985 .

[52]  Hiroyuki Fujiwara,et al.  A New Attenuation Relation for Strong Ground Motion in Japan Based on Recorded Data , 2006 .

[53]  Nick Gregor,et al.  NGA Project Strong-Motion Database , 2008 .

[54]  John Douglas,et al.  What is a Poor Quality Strong-Motion Record? , 2003 .

[55]  Charles S. Mueller,et al.  Documentation for the Southeast Asia seismic hazard maps , 2007 .