Topological Invariants for Lines

A set of topological invariants for relations between lines embedded in the 2-dimensional Euclidean space is given. The set of invariants is proven to be necessary and sufficient to characterize topological equivalence classes of binary relations between simple lines. The topology of arbitrarily complex geometric scenes is described with a variation of the same set of invariants. Polynomial time algorithms are given to assess topological equivalence of two scenes. Invariants and efficient algorithms is due to application areas of spatial database systems where a model for describing topological relations between planar features is sought.

[1]  Saul Stahl,et al.  The embeddings of a graph - A survey , 1978, J. Graph Theory.

[2]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[3]  Max J. Egenhofer,et al.  Reasoning about Gradual Changes of Topological Relationships , 1992, Spatio-Temporal Reasoning.

[4]  E. J.,et al.  Topological relations between regions with holes * , 1994 .

[5]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[6]  M. Molenaar,et al.  Single valued vector maps - A concept in Geographic Information Systems. , 1989 .

[7]  Robert E. Tarjan,et al.  Isomorphism of Planar Graphs , 1972, Complexity of Computer Computations.

[8]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[9]  Christoph Schlieder,et al.  Reasoning About Ordering , 1995, COSIT.

[10]  Daniel Hernández,et al.  Maintaining Qualitative Spatial Knowledge , 1993, COSIT.

[11]  James R. Munkres,et al.  Topology; a first course , 1974 .

[12]  Max J. Egenhofer,et al.  On the Equivalence of Topological Relations , 1995, Int. J. Geogr. Inf. Sci..

[13]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[14]  Jayant Sharma,et al.  Topological Relations Between Regions in R² and Z² , 1993, SSD.

[15]  Eliseo Clementini,et al.  Qualitative Distances , 1995, COSIT.

[16]  Jan Van den Bussche,et al.  Lossless Representation of Topological Spatial Data , 1995, SSD.

[17]  Mark Rowlands,et al.  The body in mind , 1999 .

[18]  Daniel Hernández,et al.  Qualitative Representation of Spatial Knowledge , 1994, Lecture Notes in Computer Science.

[19]  Leila De Floriani,et al.  Spatial Queries and Data Models , 1993, COSIT.

[20]  Oliver Günther,et al.  Research issues in spatial databases , 1990, SGMD.

[21]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[22]  Christian Freksa,et al.  Using Orientation Information for Qualitative Spatial Reasoning , 1992, Spatio-Temporal Reasoning.

[23]  Eliseo Clementini,et al.  Composite Regions in Topological Queries , 1995, Inf. Syst..

[24]  Terence R. Smith,et al.  Algebraic approach to spatial reasoning , 1992, Int. J. Geogr. Inf. Sci..

[25]  W. T. Tutte Combinatorial oriented maps , 1979 .

[26]  Andrew U. Frank,et al.  Qualitative spatial reasoning about distances and directions in geographic space , 1992, J. Vis. Lang. Comput..

[27]  Jayant Sharma,et al.  Inferences from Combined Knowledge about Topology and Directions , 1995, SSD.

[28]  P. D. Felice,et al.  A comparison of methods for representing topological relationships , 1995 .

[29]  Jayant Sharma,et al.  Modeling Topological Spatial Relations: Strategies for Query Processing , 1998 .

[30]  Daniel R. Montello,et al.  Spatial Information Theory A Theoretical Basis for GIS , 1995, Lecture Notes in Computer Science.

[31]  M. Egenhofer Evaluating Inconsistencies Among Multiple Representations , 2000 .

[32]  Max J. Egenhofer,et al.  Spatial SQL: A Query and Presentation Language , 1994, IEEE Trans. Knowl. Data Eng..

[33]  Eliseo Clementini,et al.  A Small Set of Formal Topological Relationships Suitable for End-User Interaction , 1993, SSD.

[34]  Kai Zimmermann,et al.  Enhancing Qualitative Spatial Reasoning - Combining Orientation and Distance , 1993, COSIT.

[35]  Joshua Zhexue Huang,et al.  Neighborhood Query and Analysis with GeoSAL, a Spatial Database Language , 1993, SSD.

[36]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[37]  John R. Herring,et al.  The Mathematical Modeling of Spatial and Non-Spatial Information in Geographic Information Systems , 1991 .

[38]  Kevin Weiler,et al.  Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments , 1985, IEEE Computer Graphics and Applications.

[39]  Myke Gluck,et al.  Spatial Information and Information Science: Introduction to JASIS' Special Topic Issue on Spatial Information , 1994, J. Am. Soc. Inf. Sci..

[40]  Max J. Egenhofer,et al.  Why not SQL! , 1992, Int. J. Geogr. Inf. Sci..

[41]  Anthony G. Cohn,et al.  Qualitative and Topological Relationships in Spatial Databases , 1993, SSD.

[42]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[43]  Robert Laurini,et al.  Topological reorganization of inconsistent geographical databases: A step towards their certification , 1994, Comput. Graph..

[44]  Raymond Reiter,et al.  A Logical Framework for Depiction and Image Interpretation , 1989, Artif. Intell..

[45]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[46]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.