Determining the Optimum Number of Ground Control Points for Obtaining High Precision Results Based on UAS Images

Ground control points (GCPs) are used in the process of indirectly georeferencing Unmanned Aerial Systems (UAS) images. A minimum of three ground control points (GCPs) is required but increasing the number of GCPs will lead to higher accuracy of the final results. The aim of this study is to provide the answer to the question of how many ground control points are necessary in order to derive high precision results. To obtain the results, an area of about 1 ha was photographed with a low-cost UAS, namely, the DJI Phantom 3 Standard at two different heights, 28 m and 35 m above ground, the camera being oriented in a nadiral position, and 50 ground control points were measured using a total station. In the first and the second scenario, the UAS images were processed using the Pix4D Mapper Pro software and 3DF Zephyr, respectively, by performing a full bundle adjustment process with the number being gradually increased from three GCPs to 40. The third test was made with 3DF Zephyr Pro software using a free-network approach in the bundle adjustment. Also, the point clouds and the mesh surfaces derived automatically after using the minimum and the optimum number of GCPs, respectively, were compared with a terrestrial laser scanner (TLS) point cloud. The results expressed a clear overview of the number of GCPs needed for the indirect georeferencing process with minimum influence on the final results.