On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives

This paper analyses the robustness of Least-Squares Monte Carlo, a technique proposed by Longstaff and Schwartz (2001) for pricing American options. This method is based on least-squares regressions in which the explanatory variables are certain polynomial functions. We analyze the impact of different basis functions on option prices. Numerical results for American put options show that this approach is quite robust to the choice of basis functions. For more complex derivatives, this choice can slightly affect option prices.

[1]  James A. Tilley Valuing American Options in a Path Simulation Model , 2002 .

[2]  F. AitSahlia,et al.  Numerical Methods in Finance: American Options: A Comparison of Numerical Methods , 1997 .

[3]  Peter Carr,et al.  Fast Accurate Valuation of American Options , 1994 .

[4]  Dawn Hunter,et al.  A canonical optimal stopping problem for American options and its numerical solution , 2000 .

[5]  R. Geske,et al.  A note on an analytical valuation formula for unprotected American call options on stocks with known dividends , 1979 .

[6]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[7]  Marti G. Subrahmanyam,et al.  Pricing and Hedging American Options: A Recursive Integration Method , 1995 .

[8]  H. P. Jr. Mackean,et al.  Appendix : A free boundary problem for the heat equation arising from a problem in mathematical economics , 1965 .

[9]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[10]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[11]  Karel Rektorys,et al.  The method of discretization in time and partial differential equations , 1982 .

[12]  I. Kim The Analytic Valuation of American Options , 1990 .

[13]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[14]  Eduardo S. Schwartz,et al.  Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis , 1977 .

[15]  P. Boyle Options: A Monte Carlo approach , 1977 .

[16]  Marti G. Subrahmanyam,et al.  A Simple Technique for the Valuation and Hedging of American Options , 1994 .

[17]  P. Carr Randomization and the American Put , 1996 .

[18]  John N. Tsitsiklis,et al.  Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives , 1999, IEEE Trans. Autom. Control..

[19]  Feng Li Option Pricing , 2000 .

[20]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[21]  Herb Johnson,et al.  The American Put Option and Its Critical Stock Price , 2000 .

[22]  Richard J. Rendleman,et al.  Two-State Option Pricing , 1979 .

[23]  Herb Johnson,et al.  A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske‐Johnson Approach , 1992 .

[24]  Michael Parkinson,et al.  Option Pricing: The American Put , 1977 .

[25]  I. Karatzas On the pricing of American options , 1988 .

[26]  Philip Protter,et al.  An analysis of a least squares regression method for American option pricing , 2002, Finance Stochastics.

[27]  T. Ho,et al.  Stochastic Interest Rates: A Generalization of the Geske-Johnson Technique , 1996 .

[28]  Les Clewlow,et al.  Implementing derivatives models , 1998 .

[29]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[30]  R. Roll,et al.  An analytic valuation formula for unprotected American call options on stocks with known dividends , 1977 .

[31]  Jérôme Barraquand,et al.  Numerical Valuation of High Dimensional Multivariate American Securities , 1995, Journal of Financial and Quantitative Analysis.

[32]  Boris Paulovich Deminovich,et al.  Métodos numéricos de análisis , 1980 .

[33]  Fernando Zapatero,et al.  Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier , 2000, Journal of Financial and Quantitative Analysis.

[34]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[36]  Eduardo S. Schwartz The valuation of warrants: Implementing a new approach , 1977 .

[37]  Richard Breen,et al.  The Accelerated Binomial Option Pricing Model , 1991 .

[38]  Rui Zhong,et al.  An Approximate Formula for Pricing American Options , 1999 .

[39]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .

[40]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[41]  S. Jacka Optimal Stopping and the American Put , 1991 .

[42]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[43]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[44]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[45]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[46]  Georges Courtadon,et al.  A More Accurate Finite Difference Approximation for the Valuation of Options , 1982, Journal of Financial and Quantitative Analysis.

[47]  Steven Raymar,et al.  Monte Carlo Estimation of American Call Options on the Maximum of Several Stocks , 1997 .

[48]  P. Glasserman,et al.  Enhanced Monte Carlo Estimates for American Option Prices , 1997 .

[49]  Robert E. Whaley,et al.  On the valuation of American call options on stocks with known dividends , 1981 .

[50]  H. Johnson An Analytic Approximation for the American Put Price , 1983, Journal of Financial and Quantitative Analysis.