Calmness modulus of fully perturbed linear programs

This paper provides operative point-based formulas (only involving the nominal data, and not data in a neighborhood) for computing or estimating the calmness modulus of the optimal set (argmin) mapping in linear optimization under uniqueness of nominal optimal solutions. Our analysis is developed in two different parametric settings. First, in the framework of canonical perturbations (i.e., perturbations of the objective function and the right-hand-side of the constraints), the paper provides a computationally tractable formula for the calmness modulus, which goes beyond some preliminary results of the literature. Second, in the framework of full perturbations (perturbations of all coefficients), after characterizing the calmness property for the optimal set mapping, the paper provides an operative upper bound for the corresponding calmness modulus, as well as some illustrative examples. We provide two applications related to algorithms traced out from the literature: the first one to a descent method in LP, and the second to a regularization method for linear programs with complementarity constraints.

[1]  Stephen J. Wright,et al.  Some properties of regularization and penalization schemes for MPECs , 2004, Optim. Methods Softw..

[2]  Diethard Klatte,et al.  Error bounds for solutions of linear equations and inequalities , 1995, Math. Methods Oper. Res..

[3]  Marco A. López,et al.  Metric regularity of semi-infinite constraint systems , 2005, Math. Program..

[4]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[5]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[6]  Christian Kanzow,et al.  A New Regularization Method for Mathematical Programs with Complementarity Constraints with Strong Convergence Properties , 2013, SIAM J. Optim..

[7]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[8]  Huynh van Ngai,et al.  Stability of Error Bounds for Convex Constraint Systems in Banach Spaces , 2010, SIAM J. Optim..

[9]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[10]  Helmut Gfrerer,et al.  First Order and Second Order Characterizations of Metric Subregularity and Calmness of Constraint Set Mappings , 2011, SIAM J. Optim..

[11]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[12]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[13]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[14]  Marco A. López,et al.  Calmness Modulus of Linear Semi-infinite Programs , 2013, SIAM J. Optim..

[15]  Jean-Pierre Dussault,et al.  A New Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2009, SIAM J. Optim..

[16]  M. J. Cánovas,et al.  On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization , 2008 .

[17]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[18]  Stephen M. Robinson,et al.  A Characterization of Stability in Linear Programming , 1977, Oper. Res..

[19]  Marco A. López,et al.  Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..

[20]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[21]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[22]  Elijah Polak,et al.  Semi-Infinite Optimization , 1997 .

[23]  D. Klatte Book review: Implicit Functions and Solution Mappings:A View from Variational Analysis. Second Edition. By A. L. Dontchev and R. T. Rockafellar. Springer, New York, 2014 , 2015 .

[24]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[25]  Diethard Klatte,et al.  Optimization methods and stability of inclusions in Banach spaces , 2008, Math. Program..

[26]  ABDERRAHIM JOURANI,et al.  Hoffman's Error Bound, Local Controllability, and Sensitivity Analysis , 2000, SIAM J. Control. Optim..

[27]  F. Javier Toledo-Moreo,et al.  Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization , 2014, Optimization Letters.

[28]  M. J. Cánovas,et al.  Calmness of the Feasible Set Mapping for Linear Inequality Systems , 2014 .

[29]  M. J. Cánovas,et al.  Stability of Indices in the KKT Conditions and Metric Regularity in Convex Semi-Infinite Optimization , 2008 .

[30]  René Henrion,et al.  Calmness of constraint systems with applications , 2005, Math. Program..