Superconvergent functional output for time-dependent problems using finite differences on summation-by-parts form

Finite difference operators satisfying the summation-by-parts (SBP) rules can be used to obtain high order accurate, energy stable schemes for time-dependent partial differential equations, when the boundary conditions are imposed weakly by the simultaneous approximation term (SAT).In general, an SBP-SAT discretization is accurate of order p+1 with an internal accuracy of 2p and a boundary accuracy of p. Despite this, it is shown in this paper that any linear functional computed from the time-dependent solution, will be accurate of order 2p when the boundary terms are imposed in a stable and dual consistent way.The method does not involve the solution of the dual equations, and superconvergent functionals are obtained at no extra computational cost. Four representative model problems are analyzed in terms of convergence and errors, and it is shown in a systematic way how to derive schemes which gives superconvergent functional outputs.

[1]  Shengtai Li,et al.  Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement , 2004 .

[2]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[3]  Jeremy E. Kozdon,et al.  Simulation of Dynamic Earthquake Ruptures in Complex Geometries Using High-Order Finite Difference Methods , 2013, J. Sci. Comput..

[4]  Nail K. Yamaleev,et al.  Local-in-time adjoint-based method for design optimization of unsteady flows , 2010, J. Comput. Phys..

[5]  Michael B. Giles,et al.  Adjoint and defect error bounding and correction for functional estimates , 2003 .

[6]  Jan Nordström,et al.  Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators , 2010, J. Sci. Comput..

[7]  Magnus Svärd,et al.  Stable and accurate schemes for the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[8]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[9]  Jing Gong,et al.  Interface procedures for finite difference approximations of the advection-diffusion equation , 2011, J. Comput. Appl. Math..

[10]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[11]  Jason E. Hicken,et al.  Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations , 2011, SIAM J. Sci. Comput..

[12]  Magnus Svärd,et al.  Steady-State Computations Using Summation-by-Parts Operators , 2005, J. Sci. Comput..

[13]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[14]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations: No-slip wall boundary conditions , 2008, J. Comput. Phys..

[15]  Antony Jameson,et al.  Unsteady Adjoint Method for the Optimal Control of Advection and Burger's Equations using High-Order Spectral Difference Method , 2011 .

[16]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[17]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[18]  David L. Darmofal,et al.  Analysis of Dual Consistency for Discontinuous Galerkin Discretizations of Source Terms , 2009, SIAM J. Numer. Anal..

[19]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[20]  M. Giles,et al.  Adjoint equations in CFD: duality, boundary conditions and solution behaviour , 1997 .

[21]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[22]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[23]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[24]  Mary F. Wheeler,et al.  Superconvergence of the Velocity in Mimetic Finite Difference Methods on Quadrilaterals , 2005, SIAM J. Numer. Anal..

[25]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[26]  Jing Gong,et al.  A stable and conservative high order multi-block method for the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[27]  Jason E. Hicken,et al.  Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..

[28]  Philip L. Roe,et al.  An unsteady entropy adjoint approach for adaptive solution of the shallow-water equations , 2011 .

[29]  Chi-Wang Shu,et al.  Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension , 2010, SIAM J. Numer. Anal..

[30]  David Gottlieb,et al.  Optimal time splitting for two- and three-dimensional navier-stokes equations with mixed derivatives , 1981 .

[31]  Krzysztof J. Fidkowski,et al.  Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convection‐dominated flows , 2011 .

[32]  James Lu,et al.  An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .

[33]  Olsson,et al.  SUMMATION BY PARTS, PROJECTIONS, AND STABILITY. I , 2010 .

[34]  Jason E. Hicken Output error estimation for summation-by-parts , 2014 .

[35]  Jan Nordström,et al.  A stable and high-order accurate conjugate heat transfer problem , 2010, J. Comput. Phys..

[36]  Qiqi Wang,et al.  Minimal Repetition Dynamic Checkpointing Algorithm for Unsteady Adjoint Calculation , 2009, SIAM J. Sci. Comput..

[37]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[38]  Michael B. Giles,et al.  Superconvergent lift estimates through adjoint error analysis , 2001 .

[39]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[40]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[41]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[42]  Endre Süli,et al.  Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .

[43]  Magnus Svärd,et al.  High-order accurate computations for unsteady aerodynamics , 2007 .

[44]  Qiqi Wang,et al.  A Monte Carlo method for solving unsteady adjoint equations , 2008, J. Comput. Phys..

[45]  Magnus Svärd,et al.  Well-Posed Boundary Conditions for the Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[46]  Jan Nordström,et al.  High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates , 2001 .

[47]  Xun Huan,et al.  Interface and Boundary Schemes for High-Order Methods , 2009 .

[48]  Jan Nordström,et al.  Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..

[49]  Dimitri J. Mavriplis,et al.  Error estimation and adaptation for functional outputs in time-dependent flow problems , 2009, J. Comput. Phys..

[50]  Ken Mattsson,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2012, J. Sci. Comput..

[51]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .