Cu(InGa)Se2 Solar Cells

Cu(In,Ga)Se2 (CIGS) solar cells were characterized in cross section using electron beam induced current (EBIC) and synchrotron based x-ray fluorescence (XRF) measurements. Samples with varying gallium ratios and growth methods were compared. A correlation was observed between the compositional gallium grading profile from XRF and carrier activity seen in EBIC through the thickness of the CIGS layer. Samples with steep back grading showed carrier activity isolated near the CIGS/CdS interface, whereas a more uniform grading resulted in carrier activity seen throughout the absorber layer. 'Notch' grading showed only slight variation in EBIC profile compared to a back graded sample with similar gallium ratios.

[1]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[2]  Lars Stolt,et al.  ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance , 1993 .

[3]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[4]  V. Alberts Band gap engineering in polycrystalline Cu(In,Ga)(Se,S)2 chalcopyrite thin films , 2004 .

[5]  D. Schmid,et al.  Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films , 1996 .

[6]  Jinwoo Lee,et al.  The determination of carrier mobilities in CIGS photovoltaic devices using high-frequency admittance measurements , 2005 .

[7]  Gérard Durand,et al.  Cadmium recovery and recycling from chemical bath deposition of CdS thin layers , 2002 .

[8]  A. Rockett,et al.  Oxygen in Solution Grown CdS Films for Thin Film Solar Cells , 1996 .

[9]  L. Stolt,et al.  Impurities in Chemical Bath Deposited CdS Films for Cu ( In , Ga ) Se2 Solar Cells and Their Stability , 1996 .

[10]  D. Haneman Properties and applications of copper indium diselenide , 1988 .

[11]  A. Ennaoui,et al.  XPS, TEM and NRA investigations of Zn(Se,OH)/Zn(OH)2 films on Cu(In,Ga)(S,Se)2 substrates for highly efficient solar cells , 2003 .

[12]  Sigurd Wagner,et al.  Efficient CuInSe2/CdS solar cells , 1975 .

[13]  J. Palm,et al.  CIS module pilot processing applying concurrent rapid selenization and sulfurization of large area thin film precursors , 2003 .

[14]  Y. S. Park,et al.  Cadmium−diffused CuInSe2 junction diode and photovoltaic detection , 1975 .

[15]  Rommel Noufi,et al.  Critical issues in the design of polycrystalline, thin‐film tandem solar cells , 2003 .

[16]  U. Rau,et al.  Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells — aspects of heterojunction formation , 2001 .

[17]  R. D. Tomlinson,et al.  Relation between electrical properties and composition in CuInSe2 single crystals , 1990 .

[18]  A. Rockett,et al.  Epitaxial growth of Cu(In, Ga)Se2 on GaAs(110) , 2002 .

[19]  Steve Hegedus,et al.  Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers , 2006 .

[20]  A. Rothwarf,et al.  Effects of a voltage‐dependent light‐generated current on solar cell measurements: CuInSe2/Cd(Zn)S , 1984 .

[21]  U. Rau Tunneling-enhanced recombination in Cu(In, Ga)Se2 heterojunction solar cells , 1999 .

[22]  Plasma etching: Safety, health and environmental considerations , 1995 .

[23]  L. Stolt,et al.  Enhanced back reflectance and quantum efficiency in Cu(In,Ga)Se2 thin film solar cells with a ZrN back reflector , 2004 .

[24]  P. Fons,et al.  Control of the thin film properties of Cu(In,Ga)Se2 using water vapor introduction during growth , 2006 .

[25]  W. Shafarman,et al.  Cu(InGa)Se2 solar cells on a flexible polymer web , 2005 .

[26]  J. Werner,et al.  Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation , 2001 .

[27]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[28]  J. Seto The electrical properties of polycrystalline silicon films , 1975 .

[29]  Jürgen H. Werner,et al.  Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells , 2003 .

[30]  R. Potter Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells , 1986 .

[31]  Oscar D. Crisalle,et al.  Device modeling and simulation of the performance of Cu(In1−x,Gax)Se2 solar cells , 2004 .

[32]  Brian E. McCandless,et al.  Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap , 1996 .

[33]  W. Jaegermann,et al.  Influence of Cu(In, Ga)Se2 band gap on the valence band offset with CdS , 2003 .

[34]  M. Nicolet,et al.  Microstructure of polycrystalline CuInSe2/Cd(Zn)S heterojunction solar cells , 1992 .

[35]  D. Lincot,et al.  CD-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD , 2003 .

[36]  Uwe Rau,et al.  A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors , 2001 .

[37]  S. Lin,et al.  Large Grain Copper Indium Diselenide Films , 1984 .

[38]  J. Thornton,et al.  Reactive sputtered CuInSe2 , 1988 .

[39]  Jonas Hedström,et al.  Coevaporation with a rate control system based on a quadrupole mass spectrometer , 1985 .

[40]  A. Forchel,et al.  Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells , 1998 .

[41]  Yanfa Yan,et al.  Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory. , 2006, Physical review letters.

[42]  U. Rau,et al.  Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells , 2002 .

[43]  J. Sites,et al.  Diode quality factor determination for thin-film solar cells , 1989 .

[44]  H. Schock,et al.  Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2 , 2001 .

[45]  I. Eisgruber,et al.  Manufacturable Large Area CdS Thin Films for Solar Cell Applications Monitored with Optical Emission Spectroscopy , 1999 .

[46]  Rommel Noufi,et al.  Properties of ZnO/CdS/CuInSe2 solar cells with improved performance , 2004 .

[47]  A. Zunger,et al.  Band offsets at the CdS/CuInSe2 heterojunction , 1993 .

[48]  R. Klenk Characterisation and modelling of chalcopyrite solar cells , 2001 .

[49]  M. León,et al.  Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys , 2002 .

[50]  Leonard J. Brillson,et al.  Direct observation of copper depletion and potential changes at copper indium gallium diselenide grain boundaries , 2005 .

[51]  G. Müller,et al.  Kinetics of CIS-formation studied in situ by thin film calorimetry , 2000 .

[52]  Jinwoo Lee,et al.  Detailed study of metastable effects in the Cu(InGa)Se2 alloys: Test of defect creation models , 2005 .

[53]  S. Siebentritt,et al.  Defects and transport in the wide gap chalcopyrite CuGaSe2 , 2003 .

[54]  David Cahen,et al.  Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance , 1998 .

[55]  A. Zunger,et al.  Effects of Na on the electrical and structural properties of CuInSe2 , 1999 .

[56]  Hans Zogg,et al.  Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils , 2005 .

[57]  K. L. Chopra,et al.  Growth Kinetics and Polymorphism of Chemically Deposited CdS Films , 1980 .

[58]  S. Nishiwaki,et al.  Self-compensation of intrinsic defects in the ternary semiconductor CuGaSe 2 , 2004 .

[59]  A. Kylner The Chemical Bath Deposited CdS / Cu ( In , Ga ) Se2 Interface as Revealed by X‐Ray Photoelectron Spectroscopy , 1999 .

[60]  D. Lincot,et al.  High-resolution transmission electron microscopy study of chemically deposited cadmium sulphide thin films from aqueous ammonia solutions , 1993 .

[61]  K. Chattopadhyay,et al.  Burstein-Moss shift in CulnSe2 films , 1991 .

[62]  H. Schock,et al.  Distribution of Defects in Polycrytalline Chalcopyrite Thin Films , 1996 .

[63]  C. Bostedt,et al.  Observation of intermixing at the buried CdS/Cu(In, Ga)Se2 thin film solar cell heterojunction , 1999 .

[64]  P. Meyers,et al.  Polycrystalline heterojunction solar cells: A device perspective , 1996 .

[65]  L. Kazmerski,et al.  Formation, growth, and stability of the CdS/CuInSe2 interface , 1982 .

[66]  U. Rau,et al.  Composition dependence of defect energies and band alignments in the Cu(In1−xGax)(Se1−ySy)2 alloy system , 2002 .

[67]  Alex Zunger,et al.  Theory of the band-gap anomaly in AB C 2 chalcopyrite semiconductors , 1984 .

[68]  M. Lux‐Steiner,et al.  MOCVD as a dry deposition method of ZnSe buffers for Cu(In,Ga)(S,Se)2 solar cells , 2004 .

[69]  Y. Hashimoto,et al.  Solar cells with Cu(In1−xGax)S2 thin films prepared by sulfurization , 2001 .

[70]  P. Fons,et al.  Cu(In1−xGax)Se2 growth studies by in situ spectroscopic light scattering , 2003 .

[71]  Kim W. Mitchell,et al.  CuInSe/sub 2/ cells and modules , 1990 .

[72]  H. Schock,et al.  Low Pressure Vapor Phase Selenization of Cu-in Films without H2Se , 1991 .

[73]  B. Lai,et al.  Applications of synchrotron radiation X-ray techniques on the analysis of the behavior of transition metals in solar cells and single-crystalline silicon with extended defects , 2003 .

[74]  Robert W. Birkmire,et al.  CuInSe2 for photovoltaic applications , 1991 .

[75]  A. Rothwarf,et al.  Interface charging and solar‐cell characteristics: CuInSe2/CdS , 1985 .

[76]  N. F. Cooray,et al.  Optimization of Al-doped ZnO Window Layers for Large-Area Cu(InGa)Se2-Based Modules by RF/DC/DC Multiple Magnetron Sputtering , 1999 .

[77]  A. Rockett,et al.  Electronic effects of sodium in epitaxial CuIn1−xGaxSe2 , 1997 .

[78]  J. Galibert,et al.  Shubnikov-De Haas oscillations in n-CuInSe2 , 1993 .

[79]  A. Rothwarf,et al.  Time-dependent open-circuit voltage in CuInSe2/CdS solar cells: theory and experiment , 1987 .

[80]  M. Lux‐Steiner,et al.  Do we really need another PL study of CuInSe2 , 2004 .

[81]  T. Nakada,et al.  Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films , 1999 .

[82]  D. Cahen,et al.  Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance , 1989 .

[83]  C. Azar,et al.  Material constraints for thin-film solar cells , 1998 .

[84]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[85]  Lars Stolt,et al.  Cu(In,Ga)Se2-based thin-film photovoltaic modules optimized for long-term performance , 2003 .

[86]  Rommel Noufi,et al.  Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In,Ga)2Se3 precursors , 1996 .

[87]  S. Siebentritt Wide gap chalcopyrites: material properties and solar cells , 2002 .

[88]  H. Schock,et al.  Cu ( In , Ga ) Se 2 SOLAR CELLS , 2001 .

[89]  H. Schock,et al.  Substrate influence on Cu(In,Ga)Se2 film texture , 2005 .

[90]  Lars Stolt,et al.  Design of grided Cu(In,Ga)Se2 thin-film PV modules , 2001 .

[91]  A. Rockett,et al.  Device-quality CuInSe2 produced by the hybrid process , 1989 .

[92]  R. Klenk,et al.  A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation , 1993 .

[93]  H. Schock,et al.  ZnO/InxSy/Cu(In,Ga)Se2 solar cells fabricated by coherent heterojunction formation , 2005 .

[94]  B. Tell,et al.  Room‐Temperature Electrical Properties of Ten I‐III‐VI2 Semiconductors , 1972 .

[95]  Sigurd Wagner,et al.  CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .

[96]  R. C. Kainthla,et al.  Solution Growth of CdSe and PbSe Films , 1980 .

[97]  A. Ennaoui,et al.  High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers , 2001 .

[98]  R. Scheer,et al.  CuInS2 based thin film solar cell with 10.2% efficiency , 1993 .

[99]  Alex Zunger,et al.  Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex , 2006 .

[100]  H. Schock,et al.  Study of the effect of gallium grading in Cu(In,Ga)Se2 , 2000 .

[101]  M. Bodegård,et al.  Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance , 2003 .

[102]  C. Abernathy,et al.  Production of single phase chalcopyrite CuInSe2 by spray pyrolysis , 1984 .

[103]  S. Chichibu,et al.  The use of diethylselenide as a less-hazardous source in CuInGaSe2 photoabsorbing alloy formation by selenization of metal precursors premixed with Se , 2006 .

[104]  K. Kushiya,et al.  Role of incorporated sulfur into the surface of Cu(InGa)Se2 thin-film absorber , 2001 .

[105]  David C. Paine,et al.  Applications and Processing of Transparent Conducting Oxides , 2000 .

[106]  W. Shafarman,et al.  Optical characterization of CuIn1−xGaxSe2 alloy thin films by spectroscopic ellipsometry , 2003 .

[107]  H. Steinberger Health, safety and environmental risks from the operation of CdTe and CIS thin-film modules , 1998 .

[108]  N. Kohara,et al.  Chemical bath deposition of Cds buffer layer for GIGS solar cells , 1998 .

[109]  Su-Huai Wei,et al.  Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys , 1995 .

[110]  Su-Huai Wei,et al.  Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties , 1998 .

[111]  R. Birkmire,et al.  Reaction analysis of the formation of CuInSe2 films in a physical vapor deposition reactor , 1998 .

[112]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[113]  R. Birkmire,et al.  Chemical reaction analysis of copper indium selenization , 1996 .

[114]  D. Suri,et al.  X-ray study of CuGaxIn1−xSe2 solid solutions , 1989 .

[115]  M. Ch. Lux-Steiner,et al.  Radiative recombination via intrinsic defects in CuxGaySe2 , 2001 .

[116]  Sylvain Marsillac,et al.  High-efficiency solar cells based on Cu(InAl)Se2 thin films , 2002 .

[117]  W. Jaegermann,et al.  Formation and electronic properties of the CdS/CuInSe2 (011) heterointerface studied by synchrotron‐induced photoemission , 1995 .

[118]  E. Umbach,et al.  Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction , 2001 .

[119]  T. Törndahl,et al.  Atomic layer deposition of Zn1−xMgxO buffer layers for Cu(In,Ga)Se2 solar cells , 2007 .

[120]  T. Nakada,et al.  Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer , 2001 .

[121]  A. Zunger,et al.  Stabilization of Ternary Compounds via Ordered Arrays of Defect Pairs , 1997 .

[122]  K. Djessas,et al.  Temperature distribution and transport mode in a close-spaced vapor transport reactor for CuInSe2 depositions , 1998 .

[123]  Vasilis Fthenakis,et al.  Toxic materials released from photovoltaic modules during fires: Health risks , 1990 .

[124]  P. Zerwas,et al.  Angular asymmetries ofe+e− annihilation to three jets , 1980 .

[125]  U. Rau,et al.  Persistent photoconductivity in Cu(In,Ga)Se2 heterojunctions and thin films prepared by sequential deposition , 1998 .

[126]  Vasilis Fthenakis,et al.  Thin‐film Photovoltaic Cells: Health and Environmental Issues in their Manufacture Use and Disposal , 1995 .

[127]  Tadashi Yoshida,et al.  Realization of Giant Optical Rotatory Power for Red and Infrared Light using III2VI3Compound Semiconductor (GaxIn1-x)2Se3 , 1996 .

[128]  D. Lincot,et al.  Towards Better Understanding of High Efficiency Cd-free CIGS Solar Cells Using Atomic Layer Deposited Indium Sulfide Buffer Layers , 2003 .

[129]  D. Cahen,et al.  Direct evidence for diffusion and electromigration of Cu in CuInSe2 , 1997 .

[130]  A. Rockett,et al.  Effect of Ga content on defect states in CuIn 1¿x Ga x Se 2 photovoltaic devices , 2002 .

[131]  I. M. Robertson,et al.  Void formation and surface energies in Cu(InGa)Se2 , 2006 .

[132]  David W. Niles,et al.  Direct observation of Na and O impurities at grain surfaces of CuInSe2 thin films , 1999 .

[133]  A. Zunger,et al.  Metal-dimer atomic reconstruction leading to deep donor states of the anion vacancy in II-VI and chalcopyrite semiconductors. , 2004, Physical review letters.

[134]  Lars Stolt,et al.  A novel cadmium free buffer layer for Cu(In,Ga)Se2 based solar cells , 1996 .

[135]  M. Döbeli,et al.  Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells , 2005 .

[136]  A. Rockett,et al.  Near-surface defect distributions in Cu(In,Ga)Se2 , 2003 .

[137]  H. Neumann,et al.  Lattice vibrational, thermal and mechanical properties of CuInSe2 , 1986 .

[138]  A. Eicke,et al.  Diffusion barriers for CIGS solar cells on metallic substrates , 2003 .

[139]  S. K. Deb,et al.  Electronic properties versus composition of thin films of CuInSe2 , 1984 .

[140]  R. Klenk,et al.  PREPARATION OF HOMOGENEOUS CU(INGA)SE2 FILMS BY SELENIZATION OF METAL PRECURSORS IN H2SE ATMOSPHERE , 1995 .

[141]  K. Granath,et al.  Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors , 2000 .

[142]  S. Siebentritt,et al.  Reconciliation of luminescence and Hall measurements on the ternary semiconductor CuGaSe2 , 2005 .

[143]  A. Rockett,et al.  A TEM study of the crystallography and defect structures of single crystal and polycrystalline copper indium diselenide , 1991 .

[144]  T. Nakada,et al.  Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts , 2004 .

[145]  L. Kazmerski,et al.  Thin‐film CuInSe2/CdS heterojunction solar cells , 1976 .

[146]  A. Zunger,et al.  Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. , 2003, Physical review letters.

[147]  F. Smole,et al.  Band‐gap engineering in CdS/Cu(In,Ga)Se2 solar cells , 1996 .

[148]  S. Wagner,et al.  Motion of p‐n junctions in CuInSe2 , 1976 .

[149]  P. Fons,et al.  In situ diagnostic methods for thin‐film fabrication: utilization of heat radiation and light scattering , 2004 .

[150]  W. Jaegermann,et al.  Fermi-level-dependent defect formation in Cu-chalcopyrite semiconductors , 1999 .

[151]  D. Schmid,et al.  Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2 , 1993 .

[152]  Hans Zogg,et al.  Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation , 2004 .

[153]  J. Guillemoles,et al.  Electron spin resonance studies of Cu(In,Ga)Se2 thin films , 2003 .

[154]  W. Jaegermann,et al.  Photoemission study and band alignment of the CuInSe2(001)/CdS heterojunction , 2004 .

[155]  Wolfgang Riedl,et al.  Rapid CIS-process for high efficiency PV-modules: development towards large area processing , 2001 .

[156]  Harry Hahn,et al.  Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur , 1953 .

[157]  H. Weinert,et al.  Infrared Faraday Effect in n-Type CuInSe2 , 1977 .

[158]  M. Lux‐Steiner,et al.  Replacement of the CBD-CdS buffer and the sputtered i-ZnO layer by an ILGAR-ZnO WEL: optimization of the WEL deposition , 2003 .

[159]  S. Guo,et al.  TiN and TiO2:Nb thin film preparation using hollow cathode sputtering with application to solar cells , 2006 .

[160]  N. Kohara,et al.  Real time composition monitoring methods in physical vapor deposition of Cu(In,Ga)Se{sub 2} thin films , 1996 .

[161]  Hole transport mechanisms in CuGaSe2 , 2005 .

[162]  S. Nishiwaki,et al.  Solar Cells Based on PVD Grown CuGaSe 2 – Absorber and Device Properties , 2001 .

[163]  Marcel A. J. Somers,et al.  Stress, strain, and microstructure of sputter‐deposited Mo thin films , 1991 .

[164]  A. Zunger,et al.  A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds , 1998 .

[165]  T. Nakada,et al.  Novel Wide-Band-Gap Ag(In 1-x Ga x )Se 2 Thin Film Solar Cells , 2005 .

[166]  T. Wada Microstructural characterization of high-efficiency Cu(In,Ga)Se2 solar cells , 1997 .

[167]  K. Jones,et al.  Microstructural properties of Cu(In,Ga)Se2 thin films used in high-efficiency devices , 2001 .

[168]  H. Hwang,et al.  Growth and properties of sputter-deposited CuInS2 thin films , 1980 .

[169]  A. Rockett,et al.  The behaviour of Na implanted into Mo thin films during annealing , 1999 .

[170]  T. Vincent,et al.  In situ X-ray fluorescence used for real-time control of CuInxGa1−xSe2 thin film composition , 2002 .

[171]  A. D. Vos,et al.  ON THE CDS/CUINSE2 CONDUCTION-BAND DISCONTINUITY. , 1995 .

[172]  Volker Probst,et al.  Second generation CIS solar modules , 2004 .

[173]  T. Negami,et al.  Composition monitoring method in CuInSe2 thin film preparation , 1995 .

[174]  R. Herberholz,et al.  Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions , 1996 .

[175]  T. Ciszek Growth and properties of CuInSe2 crystals produced by chemical vapor transport with iodine , 1984 .

[176]  Rommel Noufi,et al.  HIGH-EFFICIENCY CUINXGA1-XSE2 SOLAR CELLS MADE FROM (INX,GA1-X)2SE3 PRECURSOR FILMS , 1994 .

[177]  P. W. Li,et al.  Dielectric constant of CuInSe2 by capacitance measurements , 1979 .

[178]  Wyatt K. Metzger,et al.  Grain-boundary recombination in Cu(In,Ga)Se2 solar cells , 2005 .

[179]  K. Murali Preparation and characterization of chemically deposited CuInSe2 films , 1988 .

[180]  M. Bär,et al.  Spray‐ILGAR indium sulfide buffers for Cu(In,Ga)(S,Se)2 solar cells , 2005 .

[181]  J. Abushama,et al.  Improved performance in ZnO/CdS/CuGaSe2 thin‐film solar cells , 2003 .

[182]  H. Bardeleben The chemistry of structural defects in CuInSe2 , 1986 .

[183]  F. Ernst,et al.  Phase equilbiria of Cu-In-Se. I. Stable states and non-equilibrium states of the In2Se3-Cu2Se subsystem , 2000 .

[184]  Bulent M. Basol,et al.  Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells☆ , 1987 .

[185]  Susanne Siebentritt,et al.  A stacked chalcopyrite thin‐film tandem solar cell with 1.2 V open‐circuit voltage , 2003 .

[186]  A. Efimov,et al.  Lifetimes and configuration mixing in 110Cd , 1999 .

[187]  A. Weber,et al.  In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess , 2005 .

[188]  W. Shafarman,et al.  Effect of substrate temperature and depostion profile on evaporated Cu(InGa)Se2 films and devices , 2000 .

[189]  V. Riede,et al.  Hole Effective Masses in CuInSe2 , 1981 .

[190]  Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells , 1997 .

[191]  A. Yamada,et al.  Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers , 1995 .

[192]  Charles W. Smith,et al.  Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu‐In films to an H2S atmosphere , 1979 .

[193]  A. Finke,et al.  Environmental and health aspects of CIS-module production, use and disposal , 1994 .

[194]  D. Lincot,et al.  Chemical Bath Deposition of Cadmium Sulfide Thin Films. In Situ Growth and Structural Studies by Combined Quartz Crystal Microbalance and Electrochemical Impedance Techniques , 1992 .

[195]  S. Nishiwaki,et al.  Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells , 2001 .

[196]  B. Basol,et al.  Flexible and light weight copper indium diselenide solar cells on polyimide substrates , 1996 .

[197]  M. Powalla,et al.  Approaches to flexible CIGS thin-film solar cells , 2005 .

[198]  U. Rau,et al.  Fermi level pinning at CdS/Cu(In,Ga)(Se,S)2 interfaces: effect of chalcopyrite alloy composition , 2003 .

[199]  M. C. Joliet,et al.  Laser-induced reaction in CuInSe systems , 1989 .

[200]  H. Schock,et al.  Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films , 2003 .

[201]  J. Werner,et al.  Back surface band gap gradings in Cu(In, Ga)Se2 solar cells , 2001 .

[202]  M. Konagai,et al.  High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a novel In(OH)3:Zn2+ buffer layer , 2003 .

[203]  G. D. Mooney,et al.  Formation of CuInSe2 thin films by rapid thermal recrystallization , 1991 .

[204]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[205]  R. Rocheleau,et al.  A chemical reaction model for physical vapor deposition of compound semiconductor films , 1987 .