Screen-printed water-in-salt Al ion battery for wearable electronics

[1]  Li Zeng,et al.  Direct 3D Printing of Stress-Released Zn Powder Anodes toward Flexible Dendrite-Free Zn Batteries , 2022, Energy Storage Materials.

[2]  R. Advíncula,et al.  3D-printed flexible anode for high-performance zinc ion battery , 2022, MRS Communications.

[3]  Q. Yan,et al.  Rechargeable Aqueous Aluminum-Ion Battery: Progress and Outlook. , 2022, Small.

[4]  Lewis W. Le Fevre,et al.  Optimization of Electrolytes for High-Performance Aqueous Aluminum-Ion Batteries , 2022, ACS applied materials & interfaces.

[5]  M. Hummelgård,et al.  Metallurgical investigation of aluminum anode behavior in water-in-salt electrolyte for aqueous aluminum batteries , 2022, Journal of Power Sources.

[6]  Yongbing Tang,et al.  An aqueous aluminum-ion electrochromic full battery with water-in-salt electrolyte for high-energy density , 2021, Energy Storage Materials.

[7]  Yifei Wang,et al.  Non-aqueous Al-ion batteries: cathode materials and corresponding underlying ion storage mechanisms , 2021, Rare Metals.

[8]  Yifei Wang,et al.  Paper-based aqueous Al ion battery with water-in-salt electrolyte , 2021, Green Energy & Environment.

[9]  Yue Chen,et al.  High-Performance MnO2 /Al Battery with In Situ Electrochemically Reformed Alx MnO2 Nanosphere Cathode. , 2021, Small methods.

[10]  Jiayan Luo,et al.  Rechargeable aqueous aluminum-FeFe(CN)6 battery with artificial interphase through deep eutectic solution , 2021 .

[11]  C. Zhi,et al.  A manganese hexacyanoferrate framework with enlarged ion tunnels and two‐species redox reaction for aqueous Al-ion batteries , 2021 .

[12]  Yong Lu,et al.  High‐Energy‐Density Quinone‐Based Electrodes with [Al(OTF)]2+ Storage Mechanism for Rechargeable Aqueous Aluminum Batteries , 2021, Advanced Functional Materials.

[13]  R. Dryfe,et al.  Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry , 2021, ACS applied materials & interfaces.

[14]  C. Lee,et al.  3D-printed self-standing electrodes for flexible Li-ion batteries , 2021 .

[15]  Yifei Wang,et al.  High‐Performance Aqueous Na–Zn Hybrid Ion Battery Boosted by “Water‐In‐Gel” Electrolyte , 2021, Advanced Functional Materials.

[16]  D. Ghosh,et al.  Recent progress in ‘water-in-salt’ and ‘water-in-salt’-hybrid-electrolyte-based high voltage rechargeable batteries , 2021 .

[17]  B. Liu,et al.  Water-in-salt electrolyte for safe and high-energy aqueous battery , 2021 .

[18]  M. Srinivasan,et al.  Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks , 2020 .

[19]  Yingjun Liu,et al.  Nanomanufacturing of RGO-CNT Hybrid Film for Flexible Aqueous Al-Ion Batteries. , 2020, Small.

[20]  L. Hou,et al.  Recent Progress in “Water-in-Salt” Electrolytes Toward Non-lithium Based Rechargeable Batteries , 2020, Frontiers in Chemistry.

[21]  M. Shahzad,et al.  Prospects in anode materials for sodium ion batteries - A review , 2020 .

[22]  J. Fei,et al.  A high-performance flexible aqueous Al ion rechargeable battery with long cycle life , 2020 .

[23]  Dennis Y.C. Leung,et al.  Printing Al-air batteries on paper for powering disposable printed electronics , 2020 .

[24]  Shasha Zheng,et al.  Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries , 2020 .

[25]  K. Kubota,et al.  Research Development on K-Ion Batteries. , 2020, Chemical reviews.

[26]  S. Das,et al.  A proof of concept for low-cost rechargeable aqueous aluminium-ion batteries , 2019, Bulletin of Materials Science.

[27]  Yong‐Sheng Hu,et al.  Water-in-Salt electrolyte Promotes High Capacity FeFe(CN)6 Cathode for Aqueous Al-ion Battery. , 2019, ACS applied materials & interfaces.

[28]  Yifei Wang,et al.  Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability , 2019, Applied Energy.

[29]  Hua Wang,et al.  A flexible aqueous Al ion rechargeable full battery , 2019, Chemical Engineering Journal.

[30]  A. T. Pereira,et al.  Large-Area Paper Batteries with Ag and Zn/Ag Screen-Printed Electrodes , 2019, ACS omega.

[31]  Yifei Wang,et al.  A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance , 2019, Journal of Materials Chemistry A.

[32]  M. Terrones,et al.  Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries. , 2019, ACS applied materials & interfaces.

[33]  Yifei Wang,et al.  Innovative paper-based Al-air batteries as a low-cost and green energy technology for the miniwatt market , 2019, Journal of Power Sources.

[34]  S. Das,et al.  Al3+ ion intercalation in MoO3 for aqueous aluminum-ion battery , 2019, Journal of Power Sources.

[35]  Jiang Zhou,et al.  Recent Advances in Aqueous Zinc-Ion Batteries , 2018, ACS Energy Letters.

[36]  A. Holland,et al.  An aluminium battery operating with an aqueous electrolyte , 2018, Journal of Applied Electrochemistry.

[37]  Fei Du,et al.  Water-in-Salt Electrolyte for Potassium-Ion Batteries , 2018 .

[38]  S. Das,et al.  Anatase TiO2 as an Anode Material for Rechargeable Aqueous Aluminum-Ion Batteries: Remarkable Graphene Induced Aluminum Ion Storage Phenomenon , 2017 .

[39]  Yuesheng Wang,et al.  “Water‐in‐Salt” Electrolyte Makes Aqueous Sodium‐Ion Battery Safe, Green, and Long‐Lasting , 2017 .

[40]  S. Mahapatra,et al.  Aluminium-ion batteries: developments and challenges , 2017 .

[41]  D. Fang,et al.  High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. , 2017, ACS nano.

[42]  Woranunt Lao-atiman,et al.  Printed Transparent Thin Film Zn-MnO2Battery , 2017 .

[43]  S. Jung,et al.  Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery , 2016 .

[44]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[45]  Masanobu Chiku,et al.  Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery. , 2015, ACS applied materials & interfaces.

[46]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[47]  Xueping Gao,et al.  Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries , 2015 .

[48]  N. Hudak Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries , 2014 .

[49]  Shogo Komagata,et al.  All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing , 2013 .

[50]  Xueping Gao,et al.  Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries , 2012 .

[51]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[52]  M. Hilder,et al.  Paper-based, printed zinc–air battery , 2009 .