Sub-optimal feedback control using a successive wavelet-Galerkin algorithm

We present a numerical algorithm for solving the Hamilton-Jacobi Bellman equation using a successive Galerkin-wavelet projection scheme. According to this scheme, the so-called generalized Hamilton-Jacobi-Bellman (GHJB) equation is solved iteratively starting from a stabilizing solution. As a basis function for the Galerkin projections we consider the anti-derivatives of the well-known Daubechies' wavelets. Wavelets offer several advantages over traditional bases functions such as time-frequency localization and compact support. A numerical example illustrates the approach proposed.

[1]  Randal W. Beard,et al.  Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation , 1997, Autom..

[2]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[3]  C. J. Goh,et al.  On the nonlinear optimal regulator problem , 1993, Autom..

[4]  Randal W. Bea Successive Galerkin approximation algorithms for nonlinear optimal and robust control , 1998 .

[5]  K. Shimizu,et al.  A solution to Hamilton-Jacobi equation by neural networks and optimal state feedback control law of nonlinear systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[6]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[7]  H. L. Resnikoff Wavelet analysis , 1998 .

[8]  Jinchao Xu,et al.  Galerkin-wavelet methods for two-point boundary value problems , 1992 .

[9]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[10]  Silvia Bertoluzza,et al.  Wavelet Methods for the Numerical Solution of Boundary Value Problems on the Interval , 1994 .

[11]  R.A. Freeman,et al.  Optimal nonlinear controllers for feedback linearizable systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[12]  R. González,et al.  On Deterministic Control Problems: An Approximation Procedure for the Optimal Cost I. The Stationary Problem , 1985 .

[13]  Wolfgang Dahmen,et al.  Multiscale Wavelet Methods for Partial Differential Equations , 1997 .

[14]  B. Finlayson The method of weighted residuals and variational principles : with application in fluid mechanics, heat and mass transfer , 1972 .

[15]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[16]  I. Dolcetta On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming , 1983 .

[17]  R. Beard,et al.  Successive Galerkin approximation of nonlinear optimal attitude , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[18]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[19]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[20]  Y. Nishikawa,et al.  A method for suboptimal design of nonlinear feedback systems , 1971 .

[21]  P. Tsiotras,et al.  Approximations to optimal feedback control using a successive wavelet collocation algorithm , 2003, Proceedings of the 2003 American Control Conference, 2003..

[22]  J. Cloutier State-dependent Riccati equation techniques: an overview , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[23]  R. González,et al.  On deterministic control problems: An approximation procedure for the optimal cost , 1983, The 22nd IEEE Conference on Decision and Control.

[24]  Timothy W. McLain,et al.  Successive Galerkin Approximation of a Nonlinear Optimal Attitude Control , 1999 .