Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator

The annual cycle climatology of cloud amount, cloud‐top pressure, and optical thickness in two generations of climate models is compared to satellite observations to identify changes over time in the fidelity of simulated clouds. In more recent models, there is widespread reduction of a bias associated with too many highly reflective clouds, with the best models having eliminated this bias. With increased amounts of clouds with lesser reflectivity, the compensating errors that permit models to simulate the time‐mean radiation balance have been reduced. Errors in cloud amount as a function of height or climate regime on average show little or no improvement, although greater improvement can be found in individual models.

[1]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[2]  Axel Lauer,et al.  Simulating Clouds with Global Climate Models: A Comparison of CMIP5 Results with CMIP3 and Satellite Data , 2013 .

[3]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[4]  M. Webb,et al.  Origins of differences in climate sensitivity, forcing and feedback in climate models , 2013, Climate Dynamics.

[5]  S. Bony,et al.  The ‘too few, too bright’ tropical low‐cloud problem in CMIP5 models , 2012 .

[6]  G. Cesana,et al.  How well do climate models simulate cloud vertical structure? A comparison between CALIPSO‐GOCCP satellite observations and CMIP5 models , 2012 .

[7]  Robert Pincus,et al.  Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators , 2012 .

[8]  Andrew Gettelman,et al.  Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations , 2012 .

[9]  K. Taylor,et al.  Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere‐ocean climate models , 2012 .

[10]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[11]  Robert Pincus,et al.  Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models , 2011 .

[12]  Stephen A. Klein,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels , 2012 .

[13]  John M. Haynes,et al.  COSP: Satellite simulation software for model assessment , 2011 .

[14]  Bretherton,et al.  CFMIP: Towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models , 2011 .

[15]  H. Hasumi,et al.  Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity , 2010, Journal of Climate.

[16]  R. Marchand,et al.  A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS , 2010 .

[17]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[18]  Gerald G. Mace,et al.  Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data , 2009 .

[19]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[20]  M. Webb,et al.  A quantitative performance assessment of cloud regimes in climate models , 2009 .

[21]  C. Bretherton,et al.  The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model , 2009 .

[22]  C. Bretherton,et al.  A New Moist Turbulence Parameterization in the Community Atmosphere Model , 2009 .

[23]  R. Marchand,et al.  A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data , 2009 .

[24]  Michael J. Garay,et al.  Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations , 2008 .

[25]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[26]  S. Ghan,et al.  A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results , 2008 .

[27]  K. Taylor,et al.  Evaluating the present‐day simulation of clouds, precipitation, and radiation in climate models , 2008 .

[28]  Charles Doutriaux,et al.  Performance metrics for climate models , 2008 .

[29]  M. Webb,et al.  Towards Understanding Cloud Response in Atmospheric GCMs : The Use of Tendency Diagnostics , 2008 .

[30]  Toru Nozawa,et al.  Comparison of equilibrium and transient responses to CO2 increase in eight state-of-the-art climate models , 2008 .

[31]  M. Webb,et al.  Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing , 2008 .

[32]  Deliang Chen,et al.  The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate , 2008 .

[33]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[34]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[35]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3), Part II: Single-Column and Global Results , 2007 .

[36]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[37]  A. Dai Precipitation Characteristics in Eighteen Coupled Climate Models , 2006 .

[38]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[39]  W. Collins,et al.  The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[40]  Gill Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of Variability and Regional Climate , 2006 .

[41]  G. Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology , 2006 .

[42]  N. McFarlane,et al.  The role of shallow convection in the water and energy cycles of the atmosphere , 2005 .

[43]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[44]  S. Bony,et al.  Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements , 2005 .

[45]  S. Klein,et al.  The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations , 2004 .

[46]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[47]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[48]  J. Morcrette,et al.  A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields , 2003 .

[49]  S. Bony,et al.  Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models , 2001 .

[50]  J. Slingo,et al.  The Diurnal Cycle in the Tropics , 2001 .

[51]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[52]  V. Pope,et al.  The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 , 2000 .

[53]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[54]  S. Klein,et al.  Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model , 1999 .

[55]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[56]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .

[57]  Judith A. Curry,et al.  Overview of Arctic Cloud and Radiation Characteristics , 1996 .

[58]  A. Arakawa,et al.  Peruvian stratus clouds and the tropical Pacific circulation , 1996 .

[59]  A. Slingo,et al.  The response of a general circulation model to cloud longwave radiative forcing. II: Further studies , 1991 .

[60]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[61]  A. Slingo,et al.  The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments , 1988 .