Cyclic Bayesian Cramér-Rao bound for filtering in circular state space

Mean-squared-error (MSE) lower bounds are widely used for performance analysis in stochastic filtering problems. In many problems of this type, the nature of part of the unknown state parameters is circular or periodic. In this case, we are interested in the modulo-T estimation errors and not in the plain error values. Thus, the MSE risk and conventional MSE bounds are inappropriate for periodic stochastic filtering problems. A commonly used risk for periodic parameter estimation is the mean-cyclic-error (MCE). In this paper, we derive a cyclic version of the Bayesian Cramér-Rao bound (BCRB) on the MCE of any recursive filter. The performance of the cyclic BCRB is evaluated for phase tracking and compared to the MCEs of existing filters.

[1]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[2]  Joseph Tabrikian,et al.  Bayesian cyclic bounds for periodic parameter estimation , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[3]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[4]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[5]  K. Mardia Statistics of Directional Data , 1972 .

[6]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[7]  Wei-Ping Zhu,et al.  Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[9]  Ivan Markovic,et al.  Moving object detection, tracking and following using an omnidirectional camera on a mobile robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Joseph Tabrikian,et al.  Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.

[11]  Yaakov Oshman,et al.  Weiss–Weinstein Lower Bounds for Markovian Systems. Part 1: Theory , 2007, IEEE Transactions on Signal Processing.

[12]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[13]  Gerhard Kurz,et al.  Recursive nonlinear filtering for angular data based on circular distributions , 2013, 2013 American Control Conference.

[14]  Brian C. Lovell,et al.  The circular nature of discrete-time frequency estimates , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[15]  Steven I. Marcus,et al.  Fourier series and estimation: An application to optical phase tracking , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[16]  Uwe D. Hanebeck,et al.  Moment-based Dirac Mixture Approximation of Circular Densities , 2014 .

[17]  Joseph Tabrikian,et al.  Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[18]  H. Vincent Poor,et al.  Estimating Directional Statistics Using Wavefield Modeling and Mixtures of von-Mises Distributions , 2014, IEEE Signal Processing Letters.

[19]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[20]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[21]  Simo Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..

[22]  Garry A. Einicke,et al.  Robust extended Kalman filtering , 1999, IEEE Trans. Signal Process..

[23]  H.L. Van Trees,et al.  Combined Cramer-Rao/Weiss-Weinstein Bound for Tracking Target Bearing , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[24]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.

[25]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[26]  Gerhard Kurz,et al.  Deterministic approximation of circular densities with symmetric Dirac mixtures based on two circular moments , 2014, 17th International Conference on Information Fusion (FUSION).

[27]  Christoph F. Mecklenbräuker,et al.  Analytic Sequential Weiss–Weinstein Bounds , 2013, IEEE Transactions on Signal Processing.

[28]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[29]  I. Vaughan L. Clarkson,et al.  Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..

[30]  Kai Xiong,et al.  Robust Extended Kalman Filtering for Nonlinear Systems With Stochastic Uncertainties , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[31]  Gerhard Kurz,et al.  Nonlinear measurement update for estimation of angular systems based on circular distributions , 2014, 2014 American Control Conference.

[32]  Paris Smaragdis,et al.  A Wrapped Kalman Filter for Azimuthal Speaker Tracking , 2013, IEEE Signal Processing Letters.

[33]  Serge Reboul,et al.  A recursive fusion filter for angular data , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[34]  I. Introductiok Estimation for Rotational Processes with One Degree of Freedom-Part I1 : Discrete-Time Processes , 1975 .

[35]  S. Reece,et al.  Tighter alternatives to the Cramer-Rao lower bound for discrete-time filtering , 2005, 2005 7th International Conference on Information Fusion.

[36]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[37]  Richard S. Bucy,et al.  Geometry and multiple direction estimation , 1991, Inf. Sci..

[38]  Gerhard Kurz,et al.  Recursive estimation of orientation based on the Bingham distribution , 2013, Proceedings of the 16th International Conference on Information Fusion.