Accurate Modeling of Cryogenic Temperature Effects in 10-nm Bulk CMOS FinFETs Using the BSIM-CMG Model

In this letter, we have proposed modifications to the existing BSIM-CMG compact model to enhance its ability to model the behavior of short channel bulk FinFETs (both n and p-type) from room temperature down to cryogenic temperatures (10K). The proposed model is highly accurate in capturing the subthreshold swing, threshold voltage, and effective mobility trends observed in FinFET cryogenic operation. For efficient optimization of the proposed model parameters, we have proposed an adequate modeling strategy. We have compared convergence time between the existing BSIM-CMG model and the proposed model by simulating a reasonably large circuit using pseudo-inverters.

[1]  Young Suh Song,et al.  Investigation of Self-Heating Effects in Vertically Stacked GAA MOSFET With Wrap-Around Contact , 2022, IEEE Transactions on Electron Devices.

[2]  C. Hu,et al.  Compact Modeling of Temperature Effects in FDSOI and FinFET Devices Down to Cryogenic Temperatures , 2021, IEEE Transactions on Electron Devices.

[3]  Tengteng Lu,et al.  Characterization and Modeling of Native MOSFETs Down to 4.2 K , 2021, IEEE Transactions on Electron Devices.

[4]  G. Ghibaudo,et al.  On the modelling of temperature dependence of subthreshold swing in MOSFETs down to cryogenic temperature , 2020 .

[5]  Yao-Jen Lee,et al.  Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures , 2020, IEEE Electron Device Letters.

[6]  Fabio Sebastiano,et al.  19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[7]  G. Du,et al.  Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs , 2020 .

[8]  C. Enz,et al.  Inflection Phenomenon in Cryogenic MOSFET Behavior , 2020, IEEE Transactions on Electron Devices.

[9]  Arnout Beckers,et al.  A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic MOSFET Physics , 2019, 2019 MIXDES - 26th International Conference "Mixed Design of Integrated Circuits and Systems".

[10]  Christian Enz,et al.  Cryogenic MOSFET Threshold Voltage Model , 2019, ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC).

[11]  M. Cassé,et al.  Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening , 2019, IEEE Electron Device Letters.

[12]  H. Yin,et al.  Investigation of Quantum-Dot Characteristic Based on Different Bulk Silicon FinFET Device Models , 2019, 2019 China Semiconductor Technology International Conference (CSTIC).

[13]  Laszlo Gyongyosi,et al.  A Survey on quantum computing technology , 2019, Comput. Sci. Rev..

[14]  Tengteng Lu,et al.  MOSFET characterization and modeling at cryogenic temperatures , 2018, Cryogenics.

[15]  Arnout Beckers,et al.  Revised theoretical limit of subthreshold swing in field-effect transistors , 2018, 1811.09146.

[16]  Terence B. Hook,et al.  Modeling of Effective Thermal Resistance in Sub-14-nm Stacked Nanowire and FinFETs , 2018, IEEE Transactions on Electron Devices.

[17]  S. Baishya,et al.  Temperature effect on RF/analog and linearity parameters in DMG FinFET , 2018, Applied Physics A.

[18]  T. Hook,et al.  3-D LER and RDF Matching Performance of Nanowire FETs in Inversion, Accumulation, and Junctionless Modes , 2018, IEEE Transactions on Electron Devices.

[19]  M. B. Yelten,et al.  A cryogenic modeling methodology of MOSFET I-V characteristics in BSIM3 , 2017, 2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD).

[20]  R. Deshmukh,et al.  Compairing FinFETs: SOI Vs Bulk: Process variability, process cost, and device performance , 2015, Journées Francophones d'Ingénierie des Connaissances.

[21]  B. Lherron,et al.  A 10nm platform technology for low power and high performance application featuring FINFET devices with multi workfunction gate stack on bulk and SOI , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[22]  J. P. Dehollain,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[23]  Dominique Schreurs,et al.  A comprehensive review on microwave FinFET modeling for progressing beyond the state of art , 2013 .

[24]  W. Wernsdorfer,et al.  Electronic read-out of a single nuclear spin using a molecular spin transistor , 2012, Nature.

[25]  Morifumi Ohno,et al.  Development of Low Power Cryogenic Readout Integrated Circuits Using Fully-Depleted-Silicon-on-Insulator CMOS Technology for Far-Infrared Image Sensors , 2012 .

[26]  N. Goldsman,et al.  Compact and Distributed Modeling of Cryogenic Bulk MOSFET Operation , 2010, IEEE Transactions on Electron Devices.

[27]  Insoo Woo,et al.  Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET , 2008 .

[28]  T. Nakagawa,et al.  Cryogenic capacitive transimpedance amplifier for astronomical infrared detectors , 2004, IEEE Transactions on Electron Devices.

[29]  B. Parvais,et al.  Cryogenic temperature DC-IV measurements and compact modeling of n-channel bulk FinFETs with 3–4 nm wide fins and 20 nm gate length for quantum computing applications , 2021 .

[30]  B. Parvais,et al.  Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs , 2020, IEEE Journal of the Electron Devices Society.

[31]  P. Paliwoda Characterization of self-heating effects and assessment of its impact on reliability in finfet technology , 2018 .