An effective algorithm for the spark of sparse binary measurement matrices

Abstract The spark is an important parameter to evaluate the recovery performance of measurement matrices in compressed sensing. This paper presents an effective algorithm to calculate the upper bound of the spark of sparse binary measurement matrices. Particularly, the spark of some binary measurement matrices can be accurately calculated by using our algorithm.

[1]  Alexandros G. Dimakis,et al.  LDPC Codes for Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[2]  Shu-Tao Xia,et al.  Constructions of quasi-cyclic measurement matrices based on array codes , 2013, 2013 IEEE International Symposium on Information Theory.

[3]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[4]  Shu-Tao Xia,et al.  Deterministic Constructions of Binary Measurement Matrices From Finite Geometry , 2013, IEEE Transactions on Signal Processing.

[5]  Navin Kashyap,et al.  Shortened Array Codes of Large Girth , 2005, IEEE Transactions on Information Theory.

[6]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Dustin G. Mixon,et al.  Full Spark Frames , 2011, 1110.3548.

[8]  Yi Fang,et al.  Deterministic Construction of Compressed Sensing Matrices from Protograph LDPC Codes , 2015, IEEE Signal Processing Letters.

[9]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[10]  Jean-Luc Starck,et al.  Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[11]  Lixiang Li,et al.  An efficient privacy-preserving scheme for secure network coding based on compressed sensing , 2017 .

[12]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[13]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[14]  Hao Zhang,et al.  On the Spark of Binary LDPC Measurement Matrices From Complete Protographs , 2017, IEEE Signal Processing Letters.

[15]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[16]  Gang Wang,et al.  Deterministic constructions of compressed sensing matrices based on optimal codebooks and codes , 2019, Appl. Math. Comput..

[17]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[18]  Challa S. Sastry,et al.  Deterministic Compressed Sensing Matrices: Construction via Euler Squares and Applications , 2015, IEEE Transactions on Signal Processing.

[19]  Farrokh Marvasti,et al.  Deterministic Construction of Binary, Bipolar, and Ternary Compressed Sensing Matrices , 2009, IEEE Transactions on Information Theory.

[20]  Marc E. Pfetsch,et al.  The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing , 2012, IEEE Transactions on Information Theory.

[21]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[22]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[23]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[24]  Gennian Ge,et al.  Deterministic Construction of Sparse Sensing Matrices via Finite Geometry , 2014, IEEE Transactions on Signal Processing.

[25]  Lixiang Li,et al.  Flexible and Secure Data Transmission System Based on Semitensor Compressive Sensing in Wireless Body Area Networks , 2019, IEEE Internet of Things Journal.

[26]  Lixiang Li,et al.  Secure and Energy-Efficient Data Transmission System Based on Chaotic Compressive Sensing in Body-to-Body Networks , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[27]  Gennian Ge,et al.  Deterministic Sensing Matrices Arising From Near Orthogonal Systems , 2014, IEEE Transactions on Information Theory.

[28]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[29]  Marcel Ambroze,et al.  On the Minimum/Stopping Distance of Array Low-Density Parity-Check Codes , 2012, IEEE Transactions on Information Theory.

[30]  Gennian Ge,et al.  Deterministic Construction of Compressed Sensing Matrices via Algebraic Curves , 2012, IEEE Transactions on Information Theory.