An implicit Lie-group iterative scheme for solving the nonlinear Klein–Gordon and sine-Gordon equations

Abstract In this article, the nonlinear Klein–Gordon and sine-Gordon equations are solved by pondering the semi-discretization numerical schemes and then, the resulting ordinary differential equations at the discretized spaces are numerically integrated toward the time direction by using the implicit Lie-group iterative method to find the unknown physical quantity. When six numerical experiments are examined, we reveal that the present implicit Lie-group iterative scheme is applicable to the nonlinear Klein–Gordon and sine-Gordon equations and convergent very fast at each time marching step, and the accuracy is raised several orders, of which the numerical results are rather accurate, effective and stable.

[1]  W. Strauss,et al.  Numerical solution of a nonlinear Klein-Gordon equation , 1978 .

[2]  Mehdi Dehghan,et al.  The boundary integral equation approach for numerical solution of the one‐dimensional Sine‐Gordon equation , 2008 .

[3]  Chih-Wen Chang,et al.  A new shooting method for quasi-boundary regularization of backward heat conduction problems , 2007 .

[4]  Mehdi Dehghan,et al.  A numerical method for one‐dimensional nonlinear Sine‐Gordon equation using collocation and radial basis functions , 2008 .

[5]  D. B. Duncan,et al.  Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .

[6]  Chein-Shan Liu,et al.  The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions , 2006 .

[7]  Mehdi Dehghan,et al.  Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation , 2010, Comput. Phys. Commun..

[8]  Chein-Shan Liu,et al.  The Lie-group shooting method for boundary layer equations in fluid mechanics * * Project supported , 2006 .

[9]  Mehdi Dehghan,et al.  On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation , 2005 .

[10]  Shaher Momani,et al.  A reliable treatment of homotopy perturbation method for Klein–Gordon equations , 2007 .

[11]  Chein-Shan Liu,et al.  The Lie-Group Shooting Method for Singularly Perturbed Two-Point Boundary Value Problems , 2006 .

[12]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[13]  Anjan Biswas,et al.  Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations , 2009 .

[14]  Mehdi Dehghan,et al.  Numerical solution of the Klein–Gordon equation via He’s variational iteration method , 2007 .

[15]  Mehdi Dehghan,et al.  High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods , 2010, Math. Comput. Model..

[16]  Daoyuan Fang,et al.  Global solutions for nonlinear Klein-Gordon equations in infinite homogeneous waveguides , 2006 .

[17]  S. Arabia,et al.  Singular solitons and bifurcation analysis of quadratic nonlinear Klein-Gordon equation , 2013 .

[18]  Chih-Wen Chang,et al.  The backward group preserving scheme for 1D backward in time advection-dispersion equation , 2010 .

[19]  Salah M. El-Sayed,et al.  The decomposition method for studying the Klein–Gordon equation , 2003 .

[20]  Chein-Shan Liu,et al.  The Fourth-Order Group Preserving Methods for the Integrations of Ordinary Differential Equations , 2009 .

[21]  L. Vázquez,et al.  Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .

[22]  Chih-Wen Chang,et al.  A new shooting method for quasi‐boundary regularization of multi‐dimensional backward heat conduction problems , 2009 .

[23]  Mehdi Dehghan,et al.  Fourth-order compact solution of the nonlinear Klein-Gordon equation , 2009, Numerical Algorithms.

[24]  Houde Han,et al.  An analysis of the finite-difference method for one-dimensional Klein--Gordon equation on unbounded domain , 2009 .

[25]  P. C. Ray,et al.  SOLUTION OF NON-LINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NON-LINEAR TERM BY ADOMIAN DECOMPOSITION METHOD , 2009 .

[26]  Sirendaoreji Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations , 2007 .

[27]  Salah M. El-Sayed,et al.  A numerical solution of the Klein-Gordon equation and convergence of the decomposition method , 2004, Appl. Math. Comput..

[28]  Suheil A. Khuri,et al.  A spline collocation approach for the numerical solution of a generalized nonlinear Klein-Gordon equation , 2010, Appl. Math. Comput..

[29]  Mark A. M. Lynch Large amplitude instability in finite difference approximations to the Klein-Gordon equation , 1999 .

[30]  A. S. V. Ravi Kanth,et al.  Differential transform method for solving the linear and nonlinear Klein-Gordon equation , 2009, Comput. Phys. Commun..

[31]  Chih-Wen Chang,et al.  The Lie-Group Shooting Method for Solving Classical Blasius Flat-Plate Problem , 2008 .

[32]  Y. Tourigny,et al.  Product approximation for nonlinear Klein-Gordon equations , 1990 .

[33]  A. G. Bratsos On the numerical solution of the Klein-Gordon equation , 2009 .

[34]  Chih-Wen Chang,et al.  A Group Preserving Scheme for Inverse Heat Conduction Problems , 2005 .

[35]  Chein-Shan Liu Preserving Constraints of Differential Equations by Numerical Methods Based on Integrating Factors , 2006 .

[36]  Zhiwen Zhang,et al.  Split local absorbing conditions for one-dimensional nonlinear Klein-Gordon equation on unbounded domain , 2008, J. Comput. Phys..

[37]  L. Vázquez,et al.  A LEGENDRE SPECTRAL METHOD FOR SOLVING THE NONLINEAR KLEIN GORDON EQUATION , 1996 .

[38]  Chein-Shan Liu,et al.  Efficient Shooting Methods for the Second-Order Ordinary Differential Equations , 2006 .

[39]  Chein-Shan Liu,et al.  Nonstandard Group-Preserving Schemes for Very Stiff Ordinary Differential Equations , 2005 .

[40]  A. G. Bratsos A numerical method for the one‐dimensional sine‐Gordon equation , 2008 .

[41]  Jalil Rashidinia,et al.  Numerical solution of the nonlinear Klein-Gordon equation , 2010, J. Comput. Appl. Math..

[42]  Chein-Shan Liu A Group Preserving Scheme for Burgers Equation with Very Large Reynolds Number , 2006 .

[43]  Bengisen Pekmen,et al.  Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations , 2012, Comput. Phys. Commun..

[44]  Chein-Shan Liu,et al.  A New Shooting Method for Solving Boundary Layer Equations in Fluid Mechanics , 2008 .

[45]  Abdul-Majid Wazwaz,et al.  Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations , 2006 .

[46]  Jalil Rashidinia,et al.  Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation , 2010, Comput. Phys. Commun..

[47]  Chih-Wen Chang,et al.  Past Cone Dynamics and Backward Group Preserving Schemes for Backward Heat Conduction Problems , 2006 .

[48]  Chein-Shan Liu,et al.  A Lie-Group Adaptive Method to Identify the Radiative Coefficients in Parabolic Partial Differential Equations , 2011 .

[49]  The Lie-group shooting method for steady-state Burgers equation with high Reynolds number , 2006 .

[50]  In Jung Lee,et al.  Numerical solution for nonlinear klein-gordon equation by bollocation method with respect to spectral method , 1995 .

[51]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[52]  Md. Sazzad Hossien Chowdhury,et al.  APPLICATION OF HOMOTOPY-PERTURBATION METHOD TO KLEIN–GORDON AND SINE-GORDON EQUATIONS , 2009 .

[53]  Chein-Shan Liu,et al.  An Efficient Backward Group Preserving Scheme for the Backward in Time Burgers Equation , 2006 .

[54]  Chein-Shan Liu,et al.  New Integrating Methods for Time-Varying Linear Systems and Lie-Group Computations , 2007 .

[55]  Yung-Wei Chen,et al.  A chaos detectable and time step-size adaptive numerical scheme for nonlinear dynamical systems , 2007 .

[56]  M. Sezer,et al.  A New Approach to Numerical Solution of Nonlinear Klein-Gordon Equation , 2013 .

[57]  Chein-Shan Liu,et al.  The Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems , 2007 .

[58]  Ben-yu Guo,et al.  A collocation method for generalized nonlinear Klein-Gordon equation , 2014, Adv. Comput. Math..

[59]  Abdul-Majid Wazwaz,et al.  The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation , 2005, Appl. Math. Comput..

[60]  Ricardo Weder,et al.  Inverse Scattering on the Line for the Nonlinear Klein–Gordon Equation with a Potential , 2000 .

[61]  Mehdi Dehghan,et al.  Application of the dual reciprocity boundary integral equation technique to solve the nonlinear Klein-Gordon equation , 2010, Comput. Phys. Commun..

[62]  M. A. Helal,et al.  Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics , 2002 .

[63]  Anjan Biswas,et al.  Mathematical structure of topological solitons due to the Sine-Gordon Equation , 2011, Appl. Math. Comput..

[64]  Chein-Shan Liu,et al.  A method of Lie-symmetry GL(n,R) for solving non-linear dynamical systems , 2013 .

[65]  Chein-Shan Liu Cone of non-linear dynamical system and group preserving schemes , 2001 .