SPYGLASS. II. The Multigenerational and Multiorigin Star Formation History of Cepheus Far North
暂无分享,去创建一个
B. Tofflemire | A. Kraus | A. Rizzuto | D. Krolikowski | S. Offner | S. Murphy | R. Kerr
[1] G. Herczeg,et al. The Ages of Optically Bright Subclusters in the Serpens Star-forming Region , 2022, 2205.11089.
[2] L. Hillenbrand,et al. Kepler and the Behemoth: Three Mini-Neptunes in a 40 Million Year Old Association , 2022, The Astronomical Journal.
[3] B. Tofflemire,et al. Disk Material Inflates Gaia RUWE Values in Single Stars , 2022, Research Notes of the AAS.
[4] P. Hopkins,et al. Cluster assembly and the origin of mass segregation in the STARFORGE simulations , 2022, Monthly Notices of the Royal Astronomical Society.
[5] P. Hopkins,et al. The dynamics and outcome of star formation with jets, radiation, winds, and supernovae in concert , 2022, 2201.00882.
[6] T. Bedding,et al. Five young δ Scuti stars in the Pleiades seen with Kepler/K2 , 2021, Monthly Notices of the Royal Astronomical Society.
[7] M. Meyer,et al. Binary Formation in the Orion Nebula Cluster: Exploring the Substellar Limit , 2021, The Astrophysical Journal.
[8] A. Mann,et al. Characterizing Undetected Stellar Companions with Combined Data Sets , 2021, The Astronomical Journal.
[9] A. Kraus,et al. Gaia EDR3 Reveals the Substructure and Complicated Star Formation History of the Greater Taurus-Auriga Star-forming Complex , 2021, The Astronomical Journal.
[10] M. Kun,et al. The Gaia view of the Cepheus flare , 2021, Monthly Notices of the Royal Astronomical Society.
[11] A. Kraus,et al. Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPYGLASS). I. Mapping Young Stellar Structures and Their Star Formation Histories , 2021, 2105.09338.
[12] A. Kraus,et al. Undetected Binary Stars Cause an Observed Mass-dependent Age Gradient in Upper Scorpius , 2021, The Astrophysical Journal.
[13] T. Bedding,et al. A precise asteroseismic age and metallicity for HD 139614: a pre-main-sequence star with a protoplanetary disc in Upper Centaurus–Lupus , 2020, Monthly Notices of the Royal Astronomical Society.
[14] P. Hopkins,et al. STARFORGE: Toward a comprehensive numerical model of star cluster formation and feedback , 2020, Monthly Notices of the Royal Astronomical Society.
[15] J. J. González-Vidal,et al. Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.
[16] P. J. Richards,et al. Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.
[17] W. Brandner,et al. Dynamical traceback age of the β Pictoris moving group , 2020, Astronomy & Astrophysics.
[18] B. Macintosh,et al. BAFFLES: Bayesian Ages for Field Lower-mass Stars , 2020, The Astrophysical Journal.
[19] R. Klessen,et al. The Physics of Star Cluster Formation and Evolution , 2020, Space Science Reviews.
[20] D. Huber,et al. Very regular high-frequency pulsation modes in young intermediate-mass stars , 2020, Nature.
[21] L. Hillenbrand,et al. Rotation of Low-mass Stars in Taurus with K2 , 2020, The Astronomical Journal.
[22] D. Montes,et al. Discovery of new members of the nearby young stellar association in Cepheus , 2020, Astronomy & Astrophysics.
[23] Anthony G. A. Brown,et al. Unresolved stellar companions with Gaia DR2 astrometry , 2020, Monthly Notices of the Royal Astronomical Society.
[24] D. Hey,et al. Echelle: Dynamic echelle diagrams for asteroseismology , 2020 .
[25] S. Bryson,et al. A Probabilistic Approach to Kepler Completeness and Reliability for Exoplanet Occurrence Rates , 2019, The Astronomical Journal.
[26] M. Hayden,et al. The GALAH survey: chemodynamics of the solar neighbourhood , 2019, Monthly Notices of the Royal Astronomical Society.
[27] B. Tofflemire,et al. Accretion Kinematics in the T Tauri Binary TWA 3A: Evidence for Preferential Accretion onto the TWA 3A Primary , 2019, The Astronomical Journal.
[28] M. Meyer,et al. A Search for Intermediate-separation Low-mass Binaries in the Orion Nebula Cluster , 2019, The Astrophysical Journal.
[29] K. Covey,et al. Untangling the Galaxy. I. Local Structure and Star Formation History of the Milky Way , 2019, The Astronomical Journal.
[30] Song-Yun Wang,et al. Machine-learning Regression of Stellar Effective Temperatures in the Second Gaia Data Release , 2019, The Astronomical Journal.
[31] F. Anders,et al. Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18 , 2019, Astronomy & Astrophysics.
[32] E. Rosolowsky,et al. The Green Bank Ammonia Survey: A Virial Analysis of Gould Belt Clouds in Data Release 1 , 2019, The Astrophysical Journal.
[33] F. Timmes,et al. Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation , 2019, The Astrophysical Journal Supplement Series.
[34] B. Valette,et al. Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc , 2019, Astronomy & Astrophysics.
[35] M. Mapelli,et al. Expanding associations in the Vela-Puppis region , 2018, Astronomy & Astrophysics.
[36] J. Bland-Hawthorn,et al. Star Clusters Across Cosmic Time , 2018, Annual Review of Astronomy and Astrophysics.
[37] E. Feigelson,et al. Kinematics in Young Star Clusters and Associations with Gaia DR2 , 2018, The Astrophysical Journal.
[38] et al,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[39] P. T. de Zeeuw,et al. 3D mapping of young stars in the solar neighbourhood with Gaia DR2 , 2018, Astronomy & Astrophysics.
[40] T. Preibisch,et al. Surround&Squash: The Interstellar Medium around Scorpius Centaurus OB2 , 2018, 1808.04788.
[41] E. Feigelson,et al. The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure , 2018, The Astronomical Journal.
[42] A. Goodman,et al. Physical Properties of Large-scale Galactic Filaments , 2017, The Astrophysical Journal.
[43] F. Timmes,et al. Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.
[44] Peter G. Martin,et al. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A , 2017, 1708.05426.
[45] Michael C. Liu,et al. All-sky Co-moving Recovery Of Nearby Young Members (ACRONYM). II. The β Pictoris Moving Group , 2017, 1706.04556.
[46] J. Walsh,et al. A Tale of Three Cities: OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster , 2017, 1705.09496.
[47] B. Ercolano,et al. The dispersal of planet-forming discs: theory confronts observations , 2017, Royal Society Open Science.
[48] Leland McInnes,et al. hdbscan: Hierarchical density based clustering , 2017, J. Open Source Softw..
[49] L. Hillenbrand,et al. The Greater Taurus–Auriga Ecosystem. I. There is a Distributed Older Population , 2017, 1702.04341.
[50] C. Deliyannis,et al. WIYN Open Cluster Study. LXXV. Testing the Metallicity Dependence of Stellar Lithium Depletion Using Hyades-aged Clusters. I. Hyades and Praesepe , 2017, 1702.03936.
[51] D. Hogg,et al. Comoving Stars in Gaia DR1: An Abundance of Very Wide Separation Comoving Pairs , 2016, 1612.02440.
[52] S. Desidera,et al. The rotation-lithium depletion correlation in the β Pictoris association and the LDB age determination , 2016, 1607.06634.
[53] L. Testi,et al. A CENSUS OF LARGE-SCALE (≥10 PC), VELOCITY-COHERENT, DENSE FILAMENTS IN THE NORTHERN GALACTIC PLANE: AUTOMATED IDENTIFICATION USING MINIMUM SPANNING TREE , 2016, 1607.06452.
[54] E. Mamajek,et al. The star formation history and accretion-disc fraction among the K-type members of the Scorpius–Centaurus OB association , 2016, 1605.08789.
[55] G. Feiden. Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. III. A Consistent 10 Myr Age for the Upper Scorpius OB Association , 2016, 1604.08036.
[56] T. Henning,et al. Filament Fragmentation in High-Mass Star Formation , 2015, 1510.07063.
[57] U. Exeter,et al. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.
[58] Dean M. Townsley,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.
[59] L. Girardi,et al. PARSEC evolutionary tracks of massive stars up to 350 M ☉ at metallicities 0.0001 ≤ Z ≤ 0.04 , 2015, 1506.01681.
[60] F. Allard,et al. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.
[61] S. Bloemen,et al. Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars , 2015, 1503.03675.
[62] M. Ireland,et al. New pre-main-sequence stars in the Upper Scorpius subgroup of Sco–Cen , 2015, 1501.07270.
[63] E. Bertin,et al. Messier 35 (NGC2168) DANCe I. Membership, proper motions and multi-wavelength photometry , 2015, 1501.04416.
[64] J. Bovy. galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.
[65] E. Mamajek,et al. On the age of the β Pictoris moving group , 2014, 1409.2737.
[66] N. Przybilla,et al. Fundamental properties of nearby single early B-type stars , 2014, 1412.1418.
[67] Michael C. Liu,et al. A STELLAR CENSUS OF THE TUCANA–HOROLOGIUM MOVING GROUP , 2014, 1403.0050.
[68] R. Jeffries,et al. A lithium depletion boundary age of 21 Myr for the Beta Pictoris moving group , 2013, 1310.2613.
[69] R. Townsend,et al. GYRE: An open-source stellar oscillation code based on a new Magnus Multiple Shooting Scheme , 2013, 1308.2965.
[70] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[71] Harvard-Smithsonian CfA,et al. Stellar Multiplicity , 2013, 1303.3028.
[72] M. H. Montgomery,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.
[73] L. Girardi,et al. parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.
[74] Frank Timmes,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.
[75] H. Roussel,et al. From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.
[76] K. Biazzo,et al. Photospheric and chromospheric activity on the young solar-type star HD 171488 (V889 Herculis) , 2010, 1005.0564.
[77] Simon Portegies Zwart,et al. Young Massive Star Clusters , 2010, 1002.1961.
[78] Russel J. White,et al. A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.
[79] M. Sterzik,et al. Search for associations containing young stars (SACY) - III. Ages and Li abundances , 2009, 0909.0677.
[80] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[81] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[82] N. Santos,et al. Search for associations containing young stars (SACY) - II. Chemical abundances of stars in 11 young associations in the solar neighborhood , 2009, 0904.1221.
[83] M. Dupret,et al. Impact of the new solar abundances on the calibration of the PMS binary system RS Chamaeleontis , 2007, 0707.2609.
[84] S. Roser,et al. Astrophysical supplements to the ASCC‐2.5: Ia. Radial velocities of ∼55000 stars and mean radial velocities of 516 Galactic open clusters and associations , 2007, 0705.0878.
[85] S. Mark Ammons,et al. The N2K Consortium. IV. New Temperatures and Metallicities for More than 100,000 FGK Dwarfs , 2005, astro-ph/0510237.
[86] M. Kun,et al. Search for new T Tauri stars in the Cepheus-Cassiopeia region , 2005 .
[87] James Liebert,et al. Post-T Tauri Stars in the Nearest OB Association , 2002, astro-ph/0205417.
[88] J. Binney,et al. The age of the solar neighbourhood , 2000, astro-ph/0003479.
[89] E. Feigelson,et al. The η Chamaeleontis Cluster: A Remarkable New Nearby Young Open Cluster , 1999 .
[90] P. T. de Zeeuw,et al. A Hipparcos Census of the Nearby OB Associations , 1998, astro-ph/9809227.
[91] P. Flower,et al. Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .
[92] Phillip J. MacQueen,et al. THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .
[93] P. Bodenheimer. Studies in Stellar Evolution. II. Lithium Depletion during the Pre-Main Contraction. , 1965 .