SPYGLASS. II. The Multigenerational and Multiorigin Star Formation History of Cepheus Far North

Young stellar populations provide a record of past star formation, and by establishing their members’ dynamics and ages, it is possible to reconstruct the full history of star formation events. Gaia has greatly expanded the number of accessible stellar populations, with one of the most notable recently discovered associations being Cepheus Far North (CFN), a population containing hundreds of members spanning over 100 pc. With its proximity (d ≲ 200 pc), apparent substructure, and relatively small population, CFN represents a manageable population to study in depth, with enough evidence of internal complexity to produce a compelling star formation story. Using Gaia astrometry and photometry combined with additional spectroscopic observations, we identify over 500 candidate CFN members spread across seven subgroups. Combining ages from isochrones, asteroseismology, dynamics, and lithium depletion, we produce well-constrained ages for all seven subgroups, revealing a largely continuous 10 Myr star formation history in the association. By tracing back the present-day populations to the time of their formation, we identify two spatially and dynamically distinct nodes in which stars form, one associated with β Cephei, which shows mostly co-spatial formation, and one associated with EE Draconis with a more dispersed star formation history. This detailed view of star formation demonstrates the complexity of the star formation process, even in the smallest of regions.

[1]  G. Herczeg,et al.  The Ages of Optically Bright Subclusters in the Serpens Star-forming Region , 2022, 2205.11089.

[2]  L. Hillenbrand,et al.  Kepler and the Behemoth: Three Mini-Neptunes in a 40 Million Year Old Association , 2022, The Astronomical Journal.

[3]  B. Tofflemire,et al.  Disk Material Inflates Gaia RUWE Values in Single Stars , 2022, Research Notes of the AAS.

[4]  P. Hopkins,et al.  Cluster assembly and the origin of mass segregation in the STARFORGE simulations , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  P. Hopkins,et al.  The dynamics and outcome of star formation with jets, radiation, winds, and supernovae in concert , 2022, 2201.00882.

[6]  T. Bedding,et al.  Five young δ Scuti stars in the Pleiades seen with Kepler/K2 , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  M. Meyer,et al.  Binary Formation in the Orion Nebula Cluster: Exploring the Substellar Limit , 2021, The Astrophysical Journal.

[8]  A. Mann,et al.  Characterizing Undetected Stellar Companions with Combined Data Sets , 2021, The Astronomical Journal.

[9]  A. Kraus,et al.  Gaia EDR3 Reveals the Substructure and Complicated Star Formation History of the Greater Taurus-Auriga Star-forming Complex , 2021, The Astronomical Journal.

[10]  M. Kun,et al.  The Gaia view of the Cepheus flare , 2021, Monthly Notices of the Royal Astronomical Society.

[11]  A. Kraus,et al.  Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPYGLASS). I. Mapping Young Stellar Structures and Their Star Formation Histories , 2021, 2105.09338.

[12]  A. Kraus,et al.  Undetected Binary Stars Cause an Observed Mass-dependent Age Gradient in Upper Scorpius , 2021, The Astrophysical Journal.

[13]  T. Bedding,et al.  A precise asteroseismic age and metallicity for HD 139614: a pre-main-sequence star with a protoplanetary disc in Upper Centaurus–Lupus , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  P. Hopkins,et al.  STARFORGE: Toward a comprehensive numerical model of star cluster formation and feedback , 2020, Monthly Notices of the Royal Astronomical Society.

[15]  J. J. González-Vidal,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[16]  P. J. Richards,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[17]  W. Brandner,et al.  Dynamical traceback age of the β Pictoris moving group , 2020, Astronomy & Astrophysics.

[18]  B. Macintosh,et al.  BAFFLES: Bayesian Ages for Field Lower-mass Stars , 2020, The Astrophysical Journal.

[19]  R. Klessen,et al.  The Physics of Star Cluster Formation and Evolution , 2020, Space Science Reviews.

[20]  D. Huber,et al.  Very regular high-frequency pulsation modes in young intermediate-mass stars , 2020, Nature.

[21]  L. Hillenbrand,et al.  Rotation of Low-mass Stars in Taurus with K2 , 2020, The Astronomical Journal.

[22]  D. Montes,et al.  Discovery of new members of the nearby young stellar association in Cepheus , 2020, Astronomy & Astrophysics.

[23]  Anthony G. A. Brown,et al.  Unresolved stellar companions with Gaia DR2 astrometry , 2020, Monthly Notices of the Royal Astronomical Society.

[24]  D. Hey,et al.  Echelle: Dynamic echelle diagrams for asteroseismology , 2020 .

[25]  S. Bryson,et al.  A Probabilistic Approach to Kepler Completeness and Reliability for Exoplanet Occurrence Rates , 2019, The Astronomical Journal.

[26]  M. Hayden,et al.  The GALAH survey: chemodynamics of the solar neighbourhood , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  B. Tofflemire,et al.  Accretion Kinematics in the T Tauri Binary TWA 3A: Evidence for Preferential Accretion onto the TWA 3A Primary , 2019, The Astronomical Journal.

[28]  M. Meyer,et al.  A Search for Intermediate-separation Low-mass Binaries in the Orion Nebula Cluster , 2019, The Astrophysical Journal.

[29]  K. Covey,et al.  Untangling the Galaxy. I. Local Structure and Star Formation History of the Milky Way , 2019, The Astronomical Journal.

[30]  Song-Yun Wang,et al.  Machine-learning Regression of Stellar Effective Temperatures in the Second Gaia Data Release , 2019, The Astronomical Journal.

[31]  F. Anders,et al.  Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18 , 2019, Astronomy & Astrophysics.

[32]  E. Rosolowsky,et al.  The Green Bank Ammonia Survey: A Virial Analysis of Gould Belt Clouds in Data Release 1 , 2019, The Astrophysical Journal.

[33]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation , 2019, The Astrophysical Journal Supplement Series.

[34]  B. Valette,et al.  Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc , 2019, Astronomy & Astrophysics.

[35]  M. Mapelli,et al.  Expanding associations in the Vela-Puppis region , 2018, Astronomy & Astrophysics.

[36]  J. Bland-Hawthorn,et al.  Star Clusters Across Cosmic Time , 2018, Annual Review of Astronomy and Astrophysics.

[37]  E. Feigelson,et al.  Kinematics in Young Star Clusters and Associations with Gaia DR2 , 2018, The Astrophysical Journal.

[38]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[39]  P. T. de Zeeuw,et al.  3D mapping of young stars in the solar neighbourhood with Gaia DR2 , 2018, Astronomy & Astrophysics.

[40]  T. Preibisch,et al.  Surround&Squash: The Interstellar Medium around Scorpius Centaurus OB2 , 2018, 1808.04788.

[41]  E. Feigelson,et al.  The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure , 2018, The Astronomical Journal.

[42]  A. Goodman,et al.  Physical Properties of Large-scale Galactic Filaments , 2017, The Astrophysical Journal.

[43]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.

[44]  Peter G. Martin,et al.  The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A , 2017, 1708.05426.

[45]  Michael C. Liu,et al.  All-sky Co-moving Recovery Of Nearby Young Members (ACRONYM). II. The β Pictoris Moving Group , 2017, 1706.04556.

[46]  J. Walsh,et al.  A Tale of Three Cities: OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster , 2017, 1705.09496.

[47]  B. Ercolano,et al.  The dispersal of planet-forming discs: theory confronts observations , 2017, Royal Society Open Science.

[48]  Leland McInnes,et al.  hdbscan: Hierarchical density based clustering , 2017, J. Open Source Softw..

[49]  L. Hillenbrand,et al.  The Greater Taurus–Auriga Ecosystem. I. There is a Distributed Older Population , 2017, 1702.04341.

[50]  C. Deliyannis,et al.  WIYN Open Cluster Study. LXXV. Testing the Metallicity Dependence of Stellar Lithium Depletion Using Hyades-aged Clusters. I. Hyades and Praesepe , 2017, 1702.03936.

[51]  D. Hogg,et al.  Comoving Stars in Gaia DR1: An Abundance of Very Wide Separation Comoving Pairs , 2016, 1612.02440.

[52]  S. Desidera,et al.  The rotation-lithium depletion correlation in the β Pictoris association and the LDB age determination , 2016, 1607.06634.

[53]  L. Testi,et al.  A CENSUS OF LARGE-SCALE (≥10 PC), VELOCITY-COHERENT, DENSE FILAMENTS IN THE NORTHERN GALACTIC PLANE: AUTOMATED IDENTIFICATION USING MINIMUM SPANNING TREE , 2016, 1607.06452.

[54]  E. Mamajek,et al.  The star formation history and accretion-disc fraction among the K-type members of the Scorpius–Centaurus OB association , 2016, 1605.08789.

[55]  G. Feiden Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. III. A Consistent 10 Myr Age for the Upper Scorpius OB Association , 2016, 1604.08036.

[56]  T. Henning,et al.  Filament Fragmentation in High-Mass Star Formation , 2015, 1510.07063.

[57]  U. Exeter,et al.  A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.

[58]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[59]  L. Girardi,et al.  PARSEC evolutionary tracks of massive stars up to 350 M ☉ at metallicities 0.0001 ≤ Z ≤ 0.04 , 2015, 1506.01681.

[60]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[61]  S. Bloemen,et al.  Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars , 2015, 1503.03675.

[62]  M. Ireland,et al.  New pre-main-sequence stars in the Upper Scorpius subgroup of Sco–Cen , 2015, 1501.07270.

[63]  E. Bertin,et al.  Messier 35 (NGC2168) DANCe I. Membership, proper motions and multi-wavelength photometry , 2015, 1501.04416.

[64]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[65]  E. Mamajek,et al.  On the age of the β Pictoris moving group , 2014, 1409.2737.

[66]  N. Przybilla,et al.  Fundamental properties of nearby single early B-type stars , 2014, 1412.1418.

[67]  Michael C. Liu,et al.  A STELLAR CENSUS OF THE TUCANA–HOROLOGIUM MOVING GROUP , 2014, 1403.0050.

[68]  R. Jeffries,et al.  A lithium depletion boundary age of 21 Myr for the Beta Pictoris moving group , 2013, 1310.2613.

[69]  R. Townsend,et al.  GYRE: An open-source stellar oscillation code based on a new Magnus Multiple Shooting Scheme , 2013, 1308.2965.

[70]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[71]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[72]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[73]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[74]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[75]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[76]  K. Biazzo,et al.  Photospheric and chromospheric activity on the young solar-type star HD 171488 (V889 Herculis) , 2010, 1005.0564.

[77]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[78]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[79]  M. Sterzik,et al.  Search for associations containing young stars (SACY) - III. Ages and Li abundances , 2009, 0909.0677.

[80]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[81]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[82]  N. Santos,et al.  Search for associations containing young stars (SACY) - II. Chemical abundances of stars in 11 young associations in the solar neighborhood , 2009, 0904.1221.

[83]  M. Dupret,et al.  Impact of the new solar abundances on the calibration of the PMS binary system RS Chamaeleontis , 2007, 0707.2609.

[84]  S. Roser,et al.  Astrophysical supplements to the ASCC‐2.5: Ia. Radial velocities of ∼55000 stars and mean radial velocities of 516 Galactic open clusters and associations , 2007, 0705.0878.

[85]  S. Mark Ammons,et al.  The N2K Consortium. IV. New Temperatures and Metallicities for More than 100,000 FGK Dwarfs , 2005, astro-ph/0510237.

[86]  M. Kun,et al.  Search for new T Tauri stars in the Cepheus-Cassiopeia region , 2005 .

[87]  James Liebert,et al.  Post-T Tauri Stars in the Nearest OB Association , 2002, astro-ph/0205417.

[88]  J. Binney,et al.  The age of the solar neighbourhood , 2000, astro-ph/0003479.

[89]  E. Feigelson,et al.  The η Chamaeleontis Cluster: A Remarkable New Nearby Young Open Cluster , 1999 .

[90]  P. T. de Zeeuw,et al.  A Hipparcos Census of the Nearby OB Associations , 1998, astro-ph/9809227.

[91]  P. Flower,et al.  Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .

[92]  Phillip J. MacQueen,et al.  THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .

[93]  P. Bodenheimer Studies in Stellar Evolution. II. Lithium Depletion during the Pre-Main Contraction. , 1965 .