Maximum scattered linear sets and MRD-codes

The rank of a scattered $${\mathbb F}_q$$Fq-linear set of $${{\mathrm{{PG}}}}(r-1,q^n)$$PG(r-1,qn), rn even, is at most rn / 2 as it was proved by Blokhuis and Lavrauw. Existence results and explicit constructions were given for infinitely many values of r, n, q (rn even) for scattered $${\mathbb F}_q$$Fq-linear sets of rank rn / 2. In this paper, we prove that the bound rn / 2 is sharp also in the remaining open cases. Recently Sheekey proved that scattered $${\mathbb F}_q$$Fq-linear sets of $${{\mathrm{{PG}}}}(1,q^n)$$PG(1,qn) of maximum rank n yield $${\mathbb F}_q$$Fq-linear MRD-codes with dimension 2n and minimum distance $$n-1$$n-1. We generalize this result and show that scattered $${\mathbb F}_q$$Fq-linear sets of $${{\mathrm{{PG}}}}(r-1,q^n)$$PG(r-1,qn) of maximum rank rn / 2 yield $${\mathbb F}_q$$Fq-linear MRD-codes with dimension rn and minimum distance $$n-1$$n-1.

[1]  Olga Polverino,et al.  Semifield planes of order q4 with kernel Fq2 and center Fq , 2006, Eur. J. Comb..

[2]  Giuseppe Marino,et al.  On Fq-linear sets of PG(3, q3) and semifields , 2007, J. Comb. Theory, Ser. A.

[3]  Michel Lavrauw,et al.  Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .

[4]  Michel Lavrauw,et al.  Scattered spaces with respect to spreads, and eggs in finite projective spaces : Scattered subspaces with respect to spreads, and eggs in finite projective spaces , 2001 .

[5]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[6]  Rocco Trombetti,et al.  Generalized Twisted Gabidulin Codes , 2015, J. Comb. Theory A.

[7]  Aart Blokhuis,et al.  On Two-Intersection Sets with Respect to Hyperplanes in Projective Spaces , 2002, J. Comb. Theory, Ser. A.

[8]  Guglielmo Lunardon,et al.  MRD-codes and linear sets , 2017, J. Comb. Theory, Ser. A.

[9]  Giuseppe Marino,et al.  Fq-pseudoreguli of PG(3, q3) and scattered semifields of order q6 , 2011, Finite Fields Their Appl..

[10]  G. Lunardon Translation ovoids , 2003 .

[11]  Michel Lavrauw,et al.  Field reduction and linear sets in finite geometry , 2013, 1310.8522.

[12]  Olga Polverino,et al.  Fq-linear blocking sets in PG(2,q4) , 2005 .

[13]  Olga Polverino,et al.  Spreads in H(q) and 1-systems of Q(6, q ) , 2002, Eur. J. Comb..

[14]  Giuseppe Marino,et al.  The isotopism problem of a class of 6-dimensional rank 2 semifields and its solution , 2014, Finite Fields Their Appl..

[15]  Olga Polverino,et al.  The twisted cubic in PG(3, q) and translation spreads in H(q) , 2005, Discret. Math..

[16]  Giuseppe Marino,et al.  F q -pseudoreguli of PG ( 3 , q 3 ) and scattered semifields of order q 6 , 2011 .

[18]  Michel Lavrauw,et al.  Linear (q+1)-fold Blocking Sets in PG(2, q4) , 2000 .

[19]  Bence Csajbók,et al.  On scattered linear sets of pseudoregulus type in PG(1, qt) , 2016, Finite Fields Their Appl..

[20]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[21]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[22]  Maximilien Gadouleau,et al.  GENp1-1: Properties of Codes with the Rank Metric , 2006, IEEE Globecom 2006.

[23]  Giuseppe Marino,et al.  Infinite families of new semifields , 2009, Comb..

[24]  G. Marino,et al.  Solution to An Isotopism Question Concerning Rank 2 Semifields , 2013, 1305.4342.

[25]  Guglielmo Lunardon,et al.  Linear k-blocking Sets , 2001, Comb..

[26]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[27]  Daniele Bartoli,et al.  Maximum Scattered Linear Sets and Complete Caps in Galois Spaces , 2015, Comb..

[28]  Olga Polverino,et al.  Blocking Sets of Size qt+qt-1+1 , 2000, J. Comb. Theory, Ser. A.

[29]  Michel Lavrauw,et al.  On linear sets on a projective line , 2010, Des. Codes Cryptogr..

[30]  G. Voorde Linear (blocking) sets , 2008 .

[31]  Katherine Morrison,et al.  Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes , 2013, IEEE Transactions on Information Theory.

[32]  Pierre Loidreau,et al.  Properties of codes in rank metric , 2006, ArXiv.

[33]  Olga Polverino,et al.  On Small Blocking Sets , 1998, Comb..

[34]  R. Trombetti,et al.  Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n,n}$ , 2012, 1211.3604.

[35]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[36]  Ernst M. Gabidulin,et al.  Public_Key Cryptosystems Based on Linear Codes , 1995 .

[37]  R. Calderbank,et al.  The Geometry of Two‐Weight Codes , 1986 .

[38]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[39]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[40]  Michel Lavrauw,et al.  Scattered Linear Sets and Pseudoreguli , 2013, Electron. J. Comb..

[41]  Michel Lavrauw,et al.  Scattered Spaces in Galois Geometry , 2015, 1512.05251.

[42]  Bence Csajbók,et al.  On the equivalence of linear sets , 2015, Des. Codes Cryptogr..

[43]  David G. Glynn,et al.  Laguerre planes of even order and translation ovals , 1994 .

[44]  Giuseppe Marino,et al.  Classes and equivalence of linear sets in PG(1, qn) , 2016, J. Comb. Theory, Ser. A.