Numerical methods for strong solutions of stochastic differential equations: an overview

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable–step–size implementations based on various types of control.

[1]  Jamie Alcock,et al.  A note on the Balanced method , 2006 .

[2]  Thomas Müller-Gronbach,et al.  On the global error of Itô-Taylor schemes for strong approximation of scalar stochastic differential equations , 2004, J. Complex..

[3]  Kevin Burrage,et al.  A Variable Stepsize Implementation for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[4]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[5]  G. N. Milstein,et al.  Numerical Methods for Stochastic Systems Preserving Symplectic Structure , 2002, SIAM J. Numer. Anal..

[6]  K. Burrage,et al.  Predictor-Corrector Methods of Runge-Kutta Type for Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[7]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[8]  A. Rössler,et al.  Adaptive schemes for the numerical solution of SDEs: a comparison , 2002 .

[9]  Tianhai Tian,et al.  Two-Stage Stochastic Runge-Kutta Methods for Stochastic Differential Equations , 2002 .

[10]  H. Schurz,et al.  GENERAL THEOREMS FOR NUMERICAL APPROXIMATION OF STOCHASTIC PROCESSES ON THE HILBERT SPACE IR , 2002 .

[11]  T Shimada,et al.  Random monoallelic expression of three genes clustered within 60 kb of mouse t complex genomic DNA. , 2001, Genome research.

[12]  Tianhai Tian,et al.  Implicit Taylor methods for stiff stochastic differential equations , 2001 .

[13]  Klaus Ritter,et al.  The Optimal Discretization of Stochastic Differential Equations , 2001, J. Complex..

[14]  Tianhai Tian,et al.  Numerical methods for solving stochastic differential equations on parallel computers , 2001 .

[15]  K. R. Schneider,et al.  WAVEFORM RELAXATION METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS , 2005 .

[16]  David A. Hume,et al.  Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression , 2000 .

[17]  Kevin Burrage,et al.  Order Conditions of Stochastic Runge-Kutta Methods by B-Series , 2000, SIAM J. Numer. Anal..

[18]  Desmond J. Higham,et al.  Mean-Square and Asymptotic Stability of the Stochastic Theta Method , 2000, SIAM J. Numer. Anal..

[19]  Rachel Kuske Gradient-Particle Solutions of Fokker-Planck Equations for Noisy Delay Bifurcations , 2000, SIAM J. Sci. Comput..

[20]  K. Ritter,et al.  Step size control for the uniform approximation of systems of stochastic differential equations with additive noise , 2000 .

[21]  Tianhai Tian,et al.  A note on the stability properties of the Euler methods for solving stochastic differential equations , 2000 .

[22]  K. Burrage,et al.  Adams-Type Methods for the Numerical Solution of Stochastic Ordinary Differential Equations , 2000 .

[23]  D. Hume,et al.  Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. , 2000, Blood.

[24]  Kevin Burrage,et al.  High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula , 1999 .

[25]  Eckhard Platen,et al.  Applications of the balanced method to stochastic differential equations in filtering , 1999, Monte Carlo Methods Appl..

[26]  A. Iserles,et al.  On the Implementation of the Method of Magnus Series for Linear Differential Equations , 1999 .

[27]  E. Platen An introduction to numerical methods for stochastic differential equations , 1999, Acta Numerica.

[28]  Pamela Burrage,et al.  Runge-Kutta methods for stochastic differential equations , 1999 .

[29]  Susanne Mauthner,et al.  Step size control in the numerical solution of stochastic differential equations , 1998 .

[30]  E. Platen,et al.  Balanced Implicit Methods for Stiff Stochastic Systems , 1998 .

[31]  Gustaf Söderlind,et al.  The automatic control of numerical integration , 1998 .

[32]  Desmond J. Higham Mean-square and Asymptotic Stability of Numerical Methods for Stochastic Ordinary Diierential Equations , 1998 .

[33]  Jessica G. Gaines,et al.  Variable Step Size Control in the Numerical Solution of Stochastic Differential Equations , 1997, SIAM J. Appl. Math..

[34]  G. Lythe,et al.  Noise and dynamic transitions , 1997, adap-org/9707007.

[35]  Yoshio Komori,et al.  Rooted tree analysis of the order conditions of row-type scheme for stochastic differential equations , 1997 .

[36]  Yoshihiro Saito,et al.  Stability Analysis of Numerical Schemes for Stochastic Differential Equations , 1996 .

[37]  Lythe Domain formation in transitions with noise and a time-dependent bifurcation parameter. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[39]  Kevin Burrage,et al.  Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.

[40]  G. Milstein Numerical Integration of Stochastic Differential Equations , 1994 .

[41]  Eckhard Platen,et al.  Stability of weak numerical schemes for stochastic differential equations , 1994 .

[42]  Yoshio Komori,et al.  Some Issues in Discrete Approximate Solution for Stochastic Differential Equations(Workshop on Stochastic Numerics) , 1993 .

[43]  R. Spigler,et al.  A-stability of Runge-Kutta methods for systems with additive noise , 1992 .

[44]  L. Arnold Stochastic Differential Equations: Theory and Applications , 1992 .

[45]  S. Jacka Stochastic Flows and Stochastic Differential Equations , 1992 .

[46]  D. Gillespie Markov Processes: An Introduction for Physical Scientists , 1991 .

[47]  K. Sobczyk Stochastic Differential Equations: With Applications to Physics and Engineering , 1991 .

[48]  Nigel J. Newton Asymptotically efficient Runge-Kutta methods for a class of ITOˆ and Stratonovich equations , 1991 .

[49]  Un schéma multipas d'approximation de l'équation de Langevin , 1991 .

[50]  Peter E. Kloeden,et al.  Stratonovich and Ito Stochastic Taylor Expansions , 1991 .

[51]  Kazimierz Sobczyk Stochastic Differential Equations: Numerical Methods , 1991 .

[52]  Kjell Gustafsson,et al.  Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods , 1991, TOMS.

[53]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[54]  Gérard Ben Arous,et al.  Flots et series de Taylor stochastiques , 1989 .

[55]  L. Goldstein Mean square rates of convergence in the continuous time simulated annealing algorithm on Rd , 1988 .

[56]  Chien-Cheng Chang Numerical solution of stochastic differential equations with constant diffusion coefficients , 1987 .

[57]  J. Stucki,et al.  The adenylate kinase reaction acts as a frequency filter towards fluctuations of ATP utilization in the cell. , 1987, Biophysical chemistry.

[58]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[59]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[60]  Peter H. Baxendale,et al.  Asymptotic behaviour of stochastic flows of diffeomorphisms , 1986 .

[61]  K. Elworthy,et al.  Characteristic exponents for stochastic flows , 1986 .

[62]  Stuart A. Allison,et al.  Brownian dynamics simulation of wormlike chains. Fluorescence depolarization and depolarized light scattering , 1986 .

[63]  A. Fogelson A MATHEMATICAL MODEL AND NUMERICAL METHOD FOR STUDYING PLATELET ADHESION AND AGGREGATION DURING BLOOD CLOTTING , 1984 .

[64]  Alberto L. Sangiovanni-Vincentelli,et al.  The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[65]  W. Rüemelin Numerical Treatment of Stochastic Differential Equations , 1982 .

[66]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[67]  Eckhard Platen,et al.  Approximation of itô integral equations , 1980 .

[68]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[69]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[70]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[71]  Paul G. Hoel,et al.  Introduction to Probability Theory , 1972 .

[72]  Shinzo Watanabe,et al.  On the uniqueness of solutions of stochastic differential equations II , 1971 .

[73]  R. M. Loynes,et al.  Studies In The Theory Of Random Processes , 1966 .

[74]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[75]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[76]  G. Maruyama Continuous Markov processes and stochastic equations , 1955 .

[77]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[78]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[79]  Stuart GEMANf DIFFUSIONS FOR GLOBAL OPTIMIZATION , 2022 .