The Natural Gas Cash-Out Problem: A Bilevel Optimal Control Approach

The aim of this paper is threefold: first, it formulates the natural gas cash-out problem as a bilevel optimal control problem (BOCP); second, it provides interesting theoretical results about Pontryagin-type optimality conditions for a general BOCP where the upper level boasts a Mayer-type cost function and pure state constraints, while the lower level is a finite-dimensional mixed-integer programming problem with exactly one binary variable; and third, it applies these theoretical results in order to find possible local minimizers of the natural gas cash-out problem.

[1]  Boris S. Mordukhovich,et al.  Variational Analysis of Marginal Functions with Applications to Bilevel Programming , 2012, J. Optim. Theory Appl..

[2]  B. Mordukhovich,et al.  New necessary optimality conditions in optimistic bilevel programming , 2007 .

[3]  C. SIAMJ.,et al.  OPTIMAL STRATEGIES FOR BILEVEL DYNAMIC PROBLEMS , 1997 .

[4]  S. M. Robinson Generalized equations and their solutions, Part I: Basic theory , 1979 .

[5]  Gerardo A. Pérez-Valdés,et al.  A linearization approach to solve the natural gas cash-out bilevel problem , 2010, Ann. Oper. Res..

[6]  Boris S. Mordukhovich,et al.  Subgradients of marginal functions in parametric mathematical programming , 2008, Math. Program..

[7]  Maria do Rosário de Pinho,et al.  An integral-type constraint qualification to guarantee nondegeneracy of the maximum principle for optimal control problems with state constraints , 2013, Syst. Control. Lett..

[8]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[9]  Stephan Dempe,et al.  The bilevel programming problem: reformulations, constraint qualifications and optimality conditions , 2013, Math. Program..

[10]  S. Scholtes,et al.  Nondifferentiable and two-level mathematical programming , 1997 .

[11]  Francisco Benita,et al.  Bilevel Optimal Control With Final-State-Dependent Finite-Dimensional Lower Level , 2016, SIAM J. Optim..

[12]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[13]  Stephan Dempe,et al.  Discrete bilevel programming: Application to a natural gas cash-out problem , 2005, Eur. J. Oper. Res..

[14]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[15]  Stephan Dempe,et al.  Bilevel Optimal Control Problems with Pure State Constraints and Finite-dimensional Lower Level , 2016, SIAM J. Optim..

[16]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[17]  R. Henrion,et al.  On calmness conditions in convex bilevel programming , 2011 .

[18]  Richard B. Vinter,et al.  Optimal Control , 2000 .

[19]  Vyacheslav V. Kalashnikov,et al.  A natural gas cash-out problem: A bilevel programming framework and a penalty function method , 2006 .