Stability of finite difference schemes for hyperbolic initial boundary value problems: numerical boundary layers

In this article, we give a unified theory for constructing boundary layer expansions for dis-cretized transport equations with homogeneous Dirichlet boundary conditions. We exhibit a natural assumption on the discretization under which the numerical solution can be written approximately as a two-scale boundary layer expansion. In particular, this expansion yields discrete semigroup estimates that are compatible with the continuous semigroup estimates in the limit where the space and time steps tend to zero. The novelty of our approach is to cover numerical schemes with arbitrarily many time levels, while semigroup estimates were restricted, up to now, to numerical schemes with two time levels only.

[1]  Jean-François Coulombel,et al.  Well-posedness of hyperbolic initial boundary value problems , 2005 .

[2]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[3]  Antoine Gloria,et al.  Semigroup stability of finite difference schemes for multidimensional hyperbolic initial-boundary value problems , 2010, Math. Comput..

[4]  Eitan Tadmor,et al.  Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II , 1978 .

[5]  E. Tadmor,et al.  Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II , 1978 .

[6]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[7]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[8]  Eric Walter,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[9]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[10]  Denis Serre,et al.  Conditions aux limites pour un système strictement hyperbolique fournies, par le schéma de Godunov , 1997 .

[11]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[12]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[13]  The semigroup stability of the difference approximations for initial-boundary value problems , 1995 .

[14]  H. Kreiss Stability theory for difference approximations of mixed initial boundary value problems. I , 1968 .

[15]  C. Lubich,et al.  On resolvent conditions and stability estimates , 1991 .

[16]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[17]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[18]  Claire Chainais-Hillairet,et al.  NUMERICAL BOUNDARY LAYERS FOR HYPERBOLIC SYSTEMS IN 1-D , 2001 .

[19]  Jean-Franccois Coulombel,et al.  The Leray-G{\aa}rding method for finite difference schemes , 2015, 1505.06060.

[20]  D. Gérard-Varet Formal Derivation of Boundary Layers in Fluid Mechanics , 2005 .

[21]  L. Trefethen Spectra and pseudospectra , 2005 .

[22]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[23]  Jean-François Coulombel,et al.  Stability of Finite Difference Schemes for Hyperbolic Initial Boundary Value Problems , 2009, SIAM J. Numer. Anal..

[24]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[25]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[26]  G. Métivier On the L^2 well posedness of Hyperbolic Initial Boundary Value Problems@@@Sur le problème mixte hyperbolique dans L^2 , 2017 .