Energy Transfer and Fluorescence Quenching in Chlorophyll Containing Vesicles

Fluorescence spectroscopic experiments are reported on dimyristoyllecithin (DML) vesicles containing pheophytin a, chlorophyll a or chlorophyll b. From the temperature as well as from the concentration dependence of the fluorescence intensity a phase separation at low temperatures is observed: The chlorophylls are solubilized by the DML phase only up to concentrations of the order of 1 mole-%. the excess molecules being precipitated in domains containing almost exclusively the chlorophylls. – Whereas at high temperatures (30°C) for chlorophyll a containing vesicles a phase separation could not be established, this was possible in the pheophytin case. The pheophytin solubility in the liquid DML phase amounts to about 10 mole-%, which is consistent with monolayer studies of the system. – The efficiency of energy transfer from chlorophyll b to chlorophyll a increases with decreasing temperature for small chlorophyll concentrations (< 1 mol-%). This is due to the decrease in intermolecular distance on solidification of the lipid. The temperature dependence of the transfer efficiency is reversed at high chlorophyll concentrations (≤ 20 mole-%). This is interpreted as a consequence of the decrease of the chlorophyll solubility in the DML phase that causes a decrease in the chlorophyll-chlorophyll distance. Liposomen aus Dimyristoyllezithin (DML), die Pheophytin a, Chlorophyll a oder Chlorophyll b enthalten, wurden fluoreszenzspektroskopisch untersucht. Aus der Temperatur-bzw. Konzentrationsabhangigkeit der Fluoreszenz konnte eine Phasentrennung bei Temperaturen unterhalb der Lipidphasenumwandlung ermittelt werden: Die Chlorophylle losen sich nur zu 1 Mol-% in der DML-Phase. Der uberschus bildet Domanen, die ausschlieslich Chlorophylle enthalten. – Bei einer Temperatur oberhalb der Phasenumwandlungstemperatur (30°C) konnte fur Liposomen, die Chlorophyll a enthielten, keine Phasentrennung beobachtet werden. Pheophytin dagegen zeigt deutlich Ausscheidungsphanomene. Die Loslichkeit des Pheophytins in der quasikristallinen Lipidphase betragt etwa 10 Mol-% in ubereinstimmung mit Messungen an Lipidmonoschichten. – Die Wirksamkeit der Energieubertragung von Chlorophyll b zu Chlorophyll a in Lipidvesikeln steigt mit fallender Temperatur bei Chlorophyllkonzentrationen von weniger als 1 Mol-%. Die Ursache dieser Abnahme liegt in der Abnahme der zwischenmolekularen Abstande beim Ubergang des Lipides in die kristalline Phase. Bei hohen Chlorophyllkonzentrationen (≤20 Mol-%) nimmt dagegen die Wirksamkeit der Energicubertragung mit fallender Temperatur ab. Dies ist eine Folge der abnehmenden Loslichkeit des Chlorophylls in der DML-Phase, wodurch eine Abnahme des zwischenmolekularen Abstandes zwischen den Chlorophyll-Molekulen bewirkt wird.

[1]  H. Galla,et al.  Binding of polylysine to charged bilayer membranes: molecular organization of a lipid.peptide complex. , 1978, Biochimica et biophysica acta.

[2]  H. Galla,et al.  Fluorescence Spectroscopic and Thermodynamic Studies of Chlorophyll Containing Monolayers and Vesicles. Part I: Mixed Monolayers of Pheophytin A and Lecithin , 1978 .

[3]  E. Sackmann,et al.  Polymorphism of phospholipid monolayers , 1978 .

[4]  L. Shipman Antenna chlorophyll a and P700. Exciton transitions in chlorophyll a arrays , 1977 .

[5]  H. Möhwald,et al.  Paramagnetic fluorescence quenching in chlorophyll A containing vesicles: evidence for the localization of chlorophyll. , 1977, Biochemical and biophysical research communications.

[6]  E. Sackmann,et al.  On Domain Structure and Local Curvature in Lipid Bilayers and Biological Membranes , 1977, Zeitschrift fur Naturforschung. Section C, Biosciences.

[7]  G. Porter,et al.  Concentration quenching of chlorophyll fluorescence in bilayer lipid vesicles and liposomes , 1976 .

[8]  F. K. Fong,et al.  Exciton interactions in the symmetrical dimeric aggregate of chlorophyll a monohydrate , 1976 .

[9]  J. Norris,et al.  Photo-Induced Electron Transfer in Chlorophyll Containing Liposomes , 1976 .

[10]  J. Norris,et al.  Organization of antenna and photo-reaction centre chlorophylls on the molecular level , 1976 .

[11]  A. Lee,et al.  Fluorescence studies of chlorophyll a incorporated into lipid mixtures, and the interpretation of "phase" diagrams. , 1975, Biochimica et biophysica acta.

[12]  Lee Ag Segregation of chlorophyll a incorporated into lipid bilayers. , 1975 .

[13]  D. Marsh An interacting spin label study of lateral expansion in dipalmitoyllecithin-cholesterol bilayers. , 1974, Biochimica et biophysica acta.

[14]  E. Sackmann,et al.  Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition. , 1972, Journal of the American Chemical Society.

[15]  J. Katz,et al.  Chlorophyll-chlorophyll and chlorophyll-water interactions in the solid state. , 1972, Biochimica et biophysica acta.

[16]  R. Leblanc,et al.  Model systems for photosynthesis - III. Primary photoprocesses of chloroplast pigments in monomolecular arrays on solid surfaces , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Karlheinz Ballschmiter,et al.  Infrared study of chlorophyll-chlorophyll and chlorophyll-water interactions , 1969 .