Fluorescence spectroscopic experiments are reported on dimyristoyllecithin (DML) vesicles containing pheophytin a, chlorophyll a or chlorophyll b. From the temperature as well as from the concentration dependence of the fluorescence intensity a phase separation at low temperatures is observed: The chlorophylls are solubilized by the DML phase only up to concentrations of the order of 1 mole-%. the excess molecules being precipitated in domains containing almost exclusively the chlorophylls. – Whereas at high temperatures (30°C) for chlorophyll a containing vesicles a phase separation could not be established, this was possible in the pheophytin case. The pheophytin solubility in the liquid DML phase amounts to about 10 mole-%, which is consistent with monolayer studies of the system. – The efficiency of energy transfer from chlorophyll b to chlorophyll a increases with decreasing temperature for small chlorophyll concentrations (< 1 mol-%). This is due to the decrease in intermolecular distance on solidification of the lipid. The temperature dependence of the transfer efficiency is reversed at high chlorophyll concentrations (≤ 20 mole-%). This is interpreted as a consequence of the decrease of the chlorophyll solubility in the DML phase that causes a decrease in the chlorophyll-chlorophyll distance.
Liposomen aus Dimyristoyllezithin (DML), die Pheophytin a, Chlorophyll a oder Chlorophyll b enthalten, wurden fluoreszenzspektroskopisch untersucht. Aus der Temperatur-bzw. Konzentrationsabhangigkeit der Fluoreszenz konnte eine Phasentrennung bei Temperaturen unterhalb der Lipidphasenumwandlung ermittelt werden: Die Chlorophylle losen sich nur zu 1 Mol-% in der DML-Phase. Der uberschus bildet Domanen, die ausschlieslich Chlorophylle enthalten. – Bei einer Temperatur oberhalb der Phasenumwandlungstemperatur (30°C) konnte fur Liposomen, die Chlorophyll a enthielten, keine Phasentrennung beobachtet werden. Pheophytin dagegen zeigt deutlich Ausscheidungsphanomene. Die Loslichkeit des Pheophytins in der quasikristallinen Lipidphase betragt etwa 10 Mol-% in ubereinstimmung mit Messungen an Lipidmonoschichten. – Die Wirksamkeit der Energieubertragung von Chlorophyll b zu Chlorophyll a in Lipidvesikeln steigt mit fallender Temperatur bei Chlorophyllkonzentrationen von weniger als 1 Mol-%. Die Ursache dieser Abnahme liegt in der Abnahme der zwischenmolekularen Abstande beim Ubergang des Lipides in die kristalline Phase. Bei hohen Chlorophyllkonzentrationen (≤20 Mol-%) nimmt dagegen die Wirksamkeit der Energicubertragung mit fallender Temperatur ab. Dies ist eine Folge der abnehmenden Loslichkeit des Chlorophylls in der DML-Phase, wodurch eine Abnahme des zwischenmolekularen Abstandes zwischen den Chlorophyll-Molekulen bewirkt wird.
[1]
H. Galla,et al.
Binding of polylysine to charged bilayer membranes: molecular organization of a lipid.peptide complex.
,
1978,
Biochimica et biophysica acta.
[2]
H. Galla,et al.
Fluorescence Spectroscopic and Thermodynamic Studies of Chlorophyll Containing Monolayers and Vesicles. Part I: Mixed Monolayers of Pheophytin A and Lecithin
,
1978
.
[3]
E. Sackmann,et al.
Polymorphism of phospholipid monolayers
,
1978
.
[4]
L. Shipman.
Antenna chlorophyll a and P700. Exciton transitions in chlorophyll a arrays
,
1977
.
[5]
H. Möhwald,et al.
Paramagnetic fluorescence quenching in chlorophyll A containing vesicles: evidence for the localization of chlorophyll.
,
1977,
Biochemical and biophysical research communications.
[6]
E. Sackmann,et al.
On Domain Structure and Local Curvature in Lipid Bilayers and Biological Membranes
,
1977,
Zeitschrift fur Naturforschung. Section C, Biosciences.
[7]
G. Porter,et al.
Concentration quenching of chlorophyll fluorescence in bilayer lipid vesicles and liposomes
,
1976
.
[8]
F. K. Fong,et al.
Exciton interactions in the symmetrical dimeric aggregate of chlorophyll a monohydrate
,
1976
.
[9]
J. Norris,et al.
Photo-Induced Electron Transfer in Chlorophyll Containing Liposomes
,
1976
.
[10]
J. Norris,et al.
Organization of antenna and photo-reaction centre chlorophylls on the molecular level
,
1976
.
[11]
A. Lee,et al.
Fluorescence studies of chlorophyll a incorporated into lipid mixtures, and the interpretation of "phase" diagrams.
,
1975,
Biochimica et biophysica acta.
[12]
Lee Ag.
Segregation of chlorophyll a incorporated into lipid bilayers.
,
1975
.
[13]
D. Marsh.
An interacting spin label study of lateral expansion in dipalmitoyllecithin-cholesterol bilayers.
,
1974,
Biochimica et biophysica acta.
[14]
E. Sackmann,et al.
Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition.
,
1972,
Journal of the American Chemical Society.
[15]
J. Katz,et al.
Chlorophyll-chlorophyll and chlorophyll-water interactions in the solid state.
,
1972,
Biochimica et biophysica acta.
[16]
R. Leblanc,et al.
Model systems for photosynthesis - III. Primary photoprocesses of chloroplast pigments in monomolecular arrays on solid surfaces
,
1972,
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[17]
Karlheinz Ballschmiter,et al.
Infrared study of chlorophyll-chlorophyll and chlorophyll-water interactions
,
1969
.