Parallel Range Query processing on R-tree with Graphics Processing Units
暂无分享,去创建一个
R-trees are widely used in various areas such as geographical information systems, CAD systems and spatial databases in order to efficiently index multi-dimensional data. As data sets used in these areas grow in size and complexity, however, range query operations on R-tree are needed to be further faster to meet the area-specific constraints. To address this problem, there have been various research efforts to develop strategies for acceleration query processing on R-tree by using the buffer mechanism or parallelizing the query processing on R-tree through multiple disks and processors. As a part of the strategies, approaches which parallelize query processing on R-tree through Graphics Processor Units(GPUs) have been explored. The use of GPUs may guarantee improved performances resulting from faster calculations and reduced disk accesses but may cause additional overhead costs caused by high memory access latencies and low data exchange rate between GPUs and the CPU. In this paper, to address the overhead problems and to adapt GPUs efficiently, we propose a novel approach which uses a GPU as a buffer to parallelize query processing on R-tree. The use of buffer algorithm can give improved performance by reducing the number of disk access and maximizing coalesced memory access resulting in minimizing GPU memory access latencies. Through the extensive performance studies, we observed that the proposed approach achieved up to 5 times higher query performance than the original CPU-based R-trees.
[1] Hakan Ferhatosmanoglu,et al. Efficient parallel processing of range queries through replicated declustering , 2006, Distributed and Parallel Databases.