On the local existence of solutions to the fluid-structure interaction problem with a free interface

We address a system of equations modeling an incompressible fluid interacting with an elastic body. We prove the local existence when the initial velocity belongs to the space H, where s > 3/2 and the initial structure velocity is in H. April 29, 2021

[1]  M. Tucsnak,et al.  Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .

[2]  Irena Lasiecka,et al.  Optimal boundary control with critical penalization for a PDE model of fluid–solid interactions , 2009 .

[3]  Irena Lasiecka,et al.  Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System , 2008 .

[4]  R. Triggiani,et al.  Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions , 1992 .

[5]  Semigroup Generation and ``hidden" Trace Regularity of a Dynamic Plate with Non-Monotone Boundary Feedbacks , 2010 .

[6]  Takéo Takahashi,et al.  Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure , 2019, Nonlinearity.

[7]  Igor Kukavica,et al.  Strong solutions for a fluid structure interaction system , 2010, Advances in Differential Equations.

[8]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .

[9]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[10]  Igor Kukavica,et al.  On well-posedness and small data global existence for an interface damped free boundary fluid–structure model , 2014 .

[11]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[12]  I. Kukavica,et al.  Regularity of Solutions to a Free Boundary Problem of Fluid Structure Interaction , 2013 .

[13]  R. Triggiani,et al.  Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions , 2018 .

[14]  I. Lasiecka,et al.  The dynamical Lame system: regularity of solutions, boundary controllability and boundary data continuation , 2002 .

[15]  M. Boulakia,et al.  A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations , 2009 .

[16]  G. Simonett,et al.  ON THE TWO-PHASE NAVIER-STOKES EQUATIONS WITH SURFACE TENSION , 2009, 0908.3327.

[17]  On the existence for the Cauchy-Neumann problem for the Stokes system in the $L_p$-framework , 2000 .

[18]  C. Grandmont,et al.  Existence of Global Strong Solutions to a Beam–Fluid Interaction System , 2015, Archive for Rational Mechanics and Analysis.

[19]  Amjad Tuffaha,et al.  Smoothness of weak solutions to a nonlinear fluid-structure interaction model , 2008 .

[20]  Roland Glowinski,et al.  A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow , 2009, Appl. Math. Lett..

[21]  Irena Lasiecka,et al.  Sharp Regularity Theory for Elastic and Thermoelastic Kirchoff Equations with Free Boundary Conditions , 2000 .

[22]  I. Kukavica,et al.  Sharp trace regularity for an anisotropic elasticity system , 2013 .

[23]  Igor Kukavica,et al.  On well-posedness for a free boundary fluid-structure model , 2012 .

[24]  P. Mucha,et al.  On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion , 2000 .

[25]  Irena Lasiecka,et al.  Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction , 2011 .

[26]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[27]  L. Hou,et al.  ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .

[28]  M. Boulakia,et al.  Regular solutions of a problem coupling a compressible fluid and an elastic structure , 2010 .

[29]  Igor Kukavica,et al.  Strong solutions to a nonlinear fluid structure interaction system , 2009 .

[30]  oris,et al.  Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible , viscous fluid in a cylinder with deformable walls , 2012 .

[31]  Igor Kukavica,et al.  SOLUTIONS TO A FLUID-STRUCTURE INTERACTION FREE BOUNDARY PROBLEM , 2011 .

[32]  S. Čanić,et al.  Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition , 2015, 1505.04462.

[33]  Céline Grandmont,et al.  Weak solutions for a fluid-elastic structure interaction model , 2001 .

[34]  M. Boulakia Existence of Weak Solutions for the Three-Dimensional Motion of an Elastic Structure in an Incompressible Fluid , 2007 .

[35]  V. Solonnikov On the solvability of initial-boundary value problems for a viscous compressible fluid in an infinite time interval , 2016 .

[36]  M. Vanninathan,et al.  A fluid–structure model coupling the Navier–Stokes equations and the Lamé system , 2014 .

[37]  Jean-Paul Zolésio,et al.  Well-Posedness Analysis for a Linearization of a Fluid-Elasticity Interaction , 2015, SIAM J. Math. Anal..

[38]  K. Miyahara,et al.  Hyperbolic boundary value problems , 1982 .

[39]  Daniel Tataru,et al.  ON THE REGULARITY OF BOUNDARY TRACES FOR THE WAVE EQUATION , 1998 .

[40]  J. Zolésio,et al.  Sensitivity analysis for a free boundary fluid-elasticity interaction , 2013 .

[41]  Roberto Triggiani,et al.  Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability , 2013 .

[42]  Inria Paris-Rocquencourt EXISTENCE OF GLOBAL STRONG SOLUTIONS TO A BEAM-FLUID INTERACTION SYSTEM , 2015 .

[43]  Eduard Feireisl On the motion of rigid bodies in a viscous incompressible fluid , 2003 .

[44]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[45]  Irena Lasiecka,et al.  Interface feedback control stabilization of a nonlinear fluid–structure interaction , 2012 .

[46]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[47]  Gerd Grubb,et al.  Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. , 1991 .

[48]  Igor Kukavica,et al.  Strong solutions to a Navier–Stokes–Lamé system on a domain with a non-flat boundary , 2010 .

[49]  Igor Kukavica,et al.  Well-posedness for the compressible Navier–Stokes–Lamé system with a free interface , 2012 .