A biased random-key genetic algorithm for the project scheduling problem with flexible resources

In this paper, we investigate a resource-constrained project scheduling problem with flexible resources. This is an $$\mathcal {NP}$$NP-hard combinatorial optimization problem that consists of scheduling a set of activities requiring specific resource units of several skills. The goal is to minimize the makespan of the project. We propose a biased random-key genetic algorithm for computing feasible solutions for the referred problem. We study different decoding mechanisms: an already existing method in the literature, a new adapted serial scheduling generation scheme, and a combination of both. The new procedure is tested using a set of benchmark instances of the problem. The results provide strong evidence that the new heuristic is robust and yields high-quality feasible solutions.

[1]  Haitao Li,et al.  Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm , 2009, J. Sched..

[2]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[3]  Robert J Willis,et al.  An iterative scheduling technique for resource-constrained project scheduling , 1992 .

[4]  Linet Özdamar,et al.  A genetic algorithm approach to a general category project scheduling problem , 1999, IEEE Trans. Syst. Man Cybern. Part C.

[5]  V. Maniezzo,et al.  An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation , 1998 .

[6]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[7]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[8]  Concepción Maroto,et al.  A Robust Genetic Algorithm for Resource Allocation in Project Scheduling , 2001, Ann. Oper. Res..

[9]  Mauricio G. C. Resende,et al.  A biased random key genetic algorithm for 2D and 3D bin packing problems , 2013 .

[10]  Francisco Saldanha-da-Gama,et al.  Priority-based heuristics for the multi-skill resource constrained project scheduling problem , 2016, Expert Syst. Appl..

[11]  Francisco Saldanha-da-Gama,et al.  The impact of fixed and variable costs in a multi-skill project scheduling problem: An empirical study , 2014, Comput. Ind. Eng..

[12]  Mauricio G. C. Resende,et al.  Biased random-key genetic algorithms for combinatorial optimization , 2011, J. Heuristics.

[13]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[14]  Mauricio G. C. Resende,et al.  A biased random-key genetic algorithm for the capacitated minimum spanning tree problem , 2015, Comput. Oper. Res..

[15]  Matthias Walter,et al.  Minimizing average project team size given multi-skilled workers with heterogeneous skill levels , 2016, Comput. Oper. Res..

[16]  Mauricio G. C. Resende,et al.  A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem , 2011, J. Heuristics.

[17]  Francisco Saldanha-da-Gama,et al.  Project scheduling with flexible resources: formulation and inequalities , 2012, OR Spectr..

[18]  Sönke Hartmann,et al.  A survey of variants and extensions of the resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[19]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[20]  Francisco Saldanha-da-Gama,et al.  A Modeling Framework for Project Staffing and Scheduling Problems , 2015 .

[21]  Mauricio G. C. Resende,et al.  A biased random-key genetic algorithm for the unequal area facility layout problem , 2015, Eur. J. Oper. Res..

[22]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[23]  Grzegorz Waligóra,et al.  Project scheduling with finite or infinite number of activity processing modes - A survey , 2011, Eur. J. Oper. Res..

[24]  Mauricio G. C. Resende,et al.  A genetic algorithm for the resource constrained multi-project scheduling problem , 2008, Eur. J. Oper. Res..

[25]  Robert Klein,et al.  Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects , 2000, Eur. J. Oper. Res..

[26]  Rainer Kolisch Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation , 1994 .

[27]  Rainer Kolisch,et al.  Efficient priority rules for the resource-constrained project scheduling problem , 1996 .

[28]  Walter J. Gutjahr,et al.  Competence-driven project portfolio selection, scheduling and staff assignment , 2008, Central Eur. J. Oper. Res..

[29]  Concepción Maroto,et al.  A Hybrid Genetic Algorithm Based on Intelligent Encoding for Project Scheduling , 2007, IMECS.

[30]  Sönke Hartmann,et al.  A self‐adapting genetic algorithm for project scheduling under resource constraints , 2002 .

[31]  Rainer Kolisch,et al.  Scheduling and staffing multiple projects with a multi-skilled workforce , 2010, OR Spectr..

[32]  Mauricio G. C. Resende,et al.  A random key based genetic algorithm for the resource constrained project scheduling problem , 2009, Comput. Oper. Res..