Single Event Phenomena

This chapter continues the discussion of the other important facets of single event phenomena. It begins with multiple event effects where one incident single event upset (SEU)-inducing ion can produce more than one bit upset in the same memory array, for example. Following the above is a discussion of the effects of a device exposed to an ionizing dose of radiation prior to and/or during the occurrence of an SEU. The ionizing dose is usually construed, but not exclusively, as that from gamma rays, X-rays, protons, or electrons, corresponding to the particular hostile or benign environment in which the device finds itself.

[1]  N. Ghoniem,et al.  The Size Effect of Ion Charge Tracks on Single Event Multiple-Bit Upset , 1987, IEEE Transactions on Nuclear Science.

[2]  Hard Error Generation by Neutron-Induced Fission Fragments , 1987, IEEE Transactions on Nuclear Science.

[3]  M. Shoga,et al.  Theory of Single Event Latchup in Complementary Metal-Oxide Semiconductor Integrated Circuits , 1986, IEEE Transactions on Nuclear Science.

[4]  T. Matsukawa,et al.  Total dose dependence of soft-error hardness in 64 kbit SRAMs evaluated by single-ion microprobe technique , 1994 .

[5]  R. Pease Total-dose issues for microelectronics in space systems , 1996 .

[6]  P. S. Winokur,et al.  Three-dimensional simulation of charge collection and multiple-bit upset in Si devices , 1994 .

[7]  E. C. Smith Effects of realistic satellite shielding on SEE rates , 1994 .

[8]  T. R. Oldham,et al.  Charge Funneling in N- and P-Type Si Substrates , 1982, IEEE Transactions on Nuclear Science.

[9]  A. Taber,et al.  Single event upset in avionics , 1993 .

[10]  C. F. Wheatley,et al.  Single-event gate rupture in vertical power MOSFETs; an original empirical expression , 1994 .

[11]  L. Aukerman Amplitude Distribution of Cosmic Ray Events in Extrinsic IR Detectors , 1985, IEEE Transactions on Nuclear Science.

[12]  C. Hu,et al.  Alpha-particle-induced field and enhanced collection of carriers , 1982, IEEE Electron Device Letters.

[13]  J. S. Browning,et al.  Single event upset in irradiated 16 K CMOS SRAMs , 1988 .

[14]  D. K. Nichols,et al.  IEEE Transactions on Nuclear Science, Vol. NS-34, No. 6, December 1987 Temperature and Epi Thickness Dependence of the Heavy Ion Induced Latchup Threshold for a CMOS/EPI 16K Static RAM , 2007 .

[15]  E. G. Stassinopoulos,et al.  Variation in SEU sensitivity of dose-imprinted CMOS SRAMs , 1989 .

[16]  R. Koga,et al.  The Effect of Elevated Temperature on Latchup and Bit Errors in CMOS Devices , 1986, IEEE Transactions on Nuclear Science.

[17]  S. L. Smith,et al.  Empirical Modeling of Single-Event Upset (SEU) in NMOS Depletion-Mode-Load Static RAM (SRAM) Chips , 1986, IEEE Transactions on Nuclear Science.

[18]  A. B. Campbell,et al.  The Total Dose Dependence of the Single Event Upset Sensitivity of IDT Static RAMs , 1984, IEEE Transactions on Nuclear Science.

[19]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[20]  P. Marshall,et al.  Proton effects in charge-coupled devices , 1996 .

[21]  B. R. Wilkins,et al.  Influences on soft error rates in static RAMs , 1987 .

[22]  M. S. Gussenhoven,et al.  New Low-Altitude Dose Measurements , 1987, IEEE Transactions on Nuclear Science.

[23]  D. G. Millward,et al.  A dosimetric evaluation of the RADPAK/sup TM/ using mono-energetic electrons and protons , 1995, Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems.

[24]  R. L. Pease,et al.  An observation of proton-induced latchup (in CMOS microprocessor) , 1992 .

[25]  D. K. Nichols,et al.  Discovery of heavy-ion induced latchup in CMOS/epi devices , 1986 .

[26]  H. R. Schwartz,et al.  Single-Event Upset (SEU) in a Dram with On-Chip Error Correction , 1987, IEEE Transactions on Nuclear Science.

[27]  T. R. Oldham,et al.  Revised Funnel Calculations for Heavy Particles with High dE/dx , 1986, IEEE Transactions on Nuclear Science.

[28]  J. Choma,et al.  Single Event Upset in SOS Integrated Circuits , 1987, IEEE Transactions on Nuclear Science.

[29]  E. G. Stassinopoulos,et al.  Solid State Tape Recorders: Spaceflight SEU Data For SAMPEX And TOMS/meteor-3 , 1993, 1993 IEEE Radiation Effects Data Workshop.

[30]  A. J. Smith,et al.  Current Induced Avalanche in Epitaxial Structures , 1985, IEEE Transactions on Nuclear Science.

[31]  Kenneth F. Galloway,et al.  Analytical Model for Single Event Burnout of Power MOSFETs , 1987, IEEE Transactions on Nuclear Science.

[32]  R. Koga,et al.  SEU hardening of field programmable gate arrays (FPGAs) for space applications and device characterization , 1994 .

[33]  R. Koga,et al.  SEU (Single Event Upset) Test Techniques for 256k Statics RAMs and Comparisons of Upsets Induced by Heavy Ions and Protons , 1988 .

[34]  L. Adams,et al.  Proton induced upsets in the low altitude polar orbit , 1989 .

[35]  J. Zoutendyk,et al.  Characterization of multiple-bit errors from single-ion tracks in integrated circuits , 1989 .

[36]  P. J. McNulty,et al.  Determination of SEU parameters of NMOS and CMOS SRAMs , 1991 .

[37]  R. Koga,et al.  SEU test techniques for 256 K static RAMs and comparisons of upsets by heavy ions and protons , 1988 .

[38]  E. A. Burke,et al.  Calculation of Cosmic-Ray Induced Soft Upsets and Scaling in VLSI Devices , 1982, IEEE Transactions on Nuclear Science.

[39]  R Harboe-Sorensen,et al.  Cosmic Ray Simulation Experiments for the Study of Single Event Upsets and Latch-Up in CMOS Memories , 1983, IEEE Transactions on Nuclear Science.

[40]  M.-C. Calvet,et al.  Measurement of a cross-section for single-event gate rupture in power MOSFETs , 1996, IEEE Electron Device Letters.

[41]  E. Normand,et al.  Variation in proton-induced upsets rates from large solar flares using an improved SEU model , 1990 .

[42]  D. Gubbins,et al.  The evolution of the earth's magnetic field , 1989 .

[43]  R Harboe-Sorensen,et al.  Investigation of Heavy Particle Induced Latch-Up, Using a Californium-252 Source, in CMOS SRAMs and PROMs , 1984, IEEE Transactions on Nuclear Science.

[44]  J. McKelvey,et al.  Solid State and Semiconductor Physics , 1966 .

[45]  Lloyd W. Massengill,et al.  Effects of process parameter distributions and ion strike locations on SEU cross-section data (CMOS SRAMs) , 1993 .

[46]  Robert Ecoffet,et al.  SEE in-flight measurement on the MIR orbital station. [Single Event Effects] , 1994 .

[47]  Kenneth F. Galloway,et al.  Temperature and angular dependence of substrate response in SEGR [power MOSFET] , 1994 .

[48]  G. C. Messenger,et al.  The effects of radiation on electronic systems , 1986 .

[49]  R. R. O'Brien,et al.  A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices , 1981, IEEE Electron Device Letters.

[50]  E. G. Stassinopoulos,et al.  The space radiation environment for electronics , 1988, Proc. IEEE.

[51]  Thomas A. Fischer,et al.  Heavy-Ion-Induced, Gate-Rupture in Power MOSFETs , 1987, IEEE Transactions on Nuclear Science.

[52]  R. L. Pease,et al.  Impact of oxide thickness on SEGR failure in vertical power MOSFETs; development of a semi-empirical expression , 1995 .

[53]  T. R. Oldham,et al.  Charge Collection Measurements for Heavy Ions Incident on n- and p-Type Silicon , 1983, IEEE Transactions on Nuclear Science.

[54]  John A. Zoutendyk,et al.  Lateral charge transport from heavy-ion tracks in integrated circuit chips , 1988 .

[55]  A M Kellerer,et al.  Considerations on the random traversal of convex bodies and solutions for general cylinders. , 1971, Radiation research.

[56]  T. R. Weatherford,et al.  The shape of heavy ion upset cross section curves (SRAMs) , 1993 .

[57]  M. Xapsos Applicability of LET to single events in microelectronic structures , 1992 .

[58]  R.W. Keyes,et al.  Fundamental limits in digital information processing , 1981, Proceedings of the IEEE.

[59]  T. Wrobel,et al.  On Heavy Ion Induced Hard-Errors in Dielectric Structures , 1987, IEEE Transactions on Nuclear Science.

[60]  S. E. Diehl,et al.  Suggested Single Event Upset Figure of Merit , 1983, IEEE Transactions on Nuclear Science.

[61]  R. R. O'Brien,et al.  Dynamics of Charge Collection from Alpha-Particle Tracks in Integrated Circuits , 1981, 19th International Reliability Physics Symposium.

[62]  Larry D. Edmonds A distribution function for double-bit upsets , 1989 .

[63]  E. G. Stassinopoulos,et al.  Solar flare proton evaluation at geostationary orbits for engineering applications , 1996 .

[64]  M. Wennersten,et al.  SEE data from the APEX Cosmic Ray Upset Experiment: predicting the performance of commercial devices in space , 1995, Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems.

[65]  Plasma Screening of Funnel Fields , 1985, IEEE Transactions on Nuclear Science.

[66]  R. Koga,et al.  Experimental and analytical investigation of single event, multiple bit upsets in poly-silicon load, 64 K*1 NMOS SRAMs , 1988 .

[67]  Robert Ecoffet,et al.  Heavy ion induced single hard errors on submicronic memories (for space application) , 1992 .

[68]  H. L. Grubin,et al.  Numerical Studies of Charge Collection and Funneling in Silicon Device , 1984, IEEE Transactions on Nuclear Science.

[69]  G. C. Messenger,et al.  Collection of Charge on Junction Nodes from Ion Tracks , 1982, IEEE Transactions on Nuclear Science.