hp-Adaptive Simulation and Inversion of Magnetotelluric Measurements

The magnetotelluric (MT) method is a passive exploration technique that aims at estimating the resistivity distribution of the Earth’s subsurface, and therefore at providing an image of it. This process is divided into two different steps. The first one consists in recording the data. In a second step, recorded measurements are analyzed by employing numerical methods. This dissertation focuses in this second task. We provide a rigorous mathematical setting in the context of the Finite Element Method (FEM) that helps to understand the MT problem and its inversion process. In order to recover a map of the subsurface based on 2D MT measurements, we employ for the first time in MTs a multigoal oriented self adaptive hp-Finite Element Method (FEM). We accurately solve both the full formulation as well as a secondary field formulation where the primary field is given by the solution of a 1D layered media. To truncate the computational domain, we design a Perfectly Matched Layer (PML) that automatically adapts to high-contrast material properties that appear within the subsurface and on the air-ground interface. For the inversion process, we develop a first step of a Dimensionally Adaptive Method (DAM) by considering the dimension of the problem as a variable in the inversion. Additionally, this dissertation supplies a rigorous numerical analysis for the forward and inverse problems. Regarding the forward modelization, we perform a frequency sensitivity analysis, we study the effect of the source, the convergence of the hp-adaptivity, or the effect of the PML in the computation of the electromagnetic fields and impedance. As far as the inversion is concerned, we study the impact of the selected variable for the inversion process, the different information that each mode provides, and the gains of the DAM approach.

[1]  S. P. Srivastava,et al.  Method of interpretation of magnetotelluric data when source field is considered , 1965 .

[2]  K. Vozoff,et al.  Electromagnetic methods in applied geophysics , 1980 .

[3]  Francis T. Wu,et al.  THE INVERSE PROBLEM OF MAGNETOTELLURIC SOUNDING , 1968 .

[4]  P. Toint,et al.  Global convergence of a class of trust region algorithms for optimization with simple bounds , 1988 .

[5]  Alan G. Jones,et al.  Parkinson's pointers' potential perfidy! , 1986 .

[6]  Leszek Demkowicz,et al.  Fully automatic hp-adaptivity for Maxwell's equations , 2005 .

[7]  David Pardo Integration of hp-adaptivity with a two grid solver: applications to electromagnetics , 2004 .

[8]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[9]  Victor M. Calo,et al.  On Round-off Error for Adaptive Finite Element Methods , 2012, ICCS.

[10]  Peter M. Shearer,et al.  Water in the lower continental crust: modelling magnetotelluric and seismic reflection results , 1989 .

[11]  F. W. Jones,et al.  The Perturbations of Alternating Geomagnetic Fields by Conductivity Anomalies , 1970 .

[12]  Philip E. Wannamaker,et al.  Advances in three-dimensional magnetotelluric modeling using integral equations , 1991 .

[13]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[14]  Gerald W. Hohmann,et al.  Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations , 1983 .

[15]  Yusheng Feng,et al.  Local and pollution error estimation for finite element approximations of elliptic boundary value problems , 1996 .

[16]  Alan G. Jones,et al.  Lithospheric geometry of the Wopmay orogen from a Slave craton to Bear Province magnetotelluric transect , 2009 .

[17]  H. W. Smith,et al.  Investigation of Large-Scale Inhomogeneities in the Earth by the Magnetotelluric Method , 1962, Proceedings of the IRE.

[18]  Yasuo Ogawa,et al.  A two-dimensional magnetotelluric inversion assuming Gaussian static shift , 1995 .

[19]  C. Swift,et al.  A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States , 1967 .

[20]  Stéphane Rondenay,et al.  Obliquity between seismic and electrical anisotropies as a potential indicator of movement sense for ductile shear zones in the upper mantle , 1996 .

[21]  Michel Fortin,et al.  Iterative solvers for 3D linear and nonlinear elasticity problems: Displacement and mixed formulations , 2010 .

[22]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[23]  Victor M. Calo,et al.  A survey on direct solvers for Galerkin methods , 2012 .

[24]  Yasuo Ogawa,et al.  On Two-Dimensional Modeling Of Magnetotelluric Field Data , 2002 .

[25]  Thomas J. R. Hughes,et al.  Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis , 2014 .

[26]  G. W. Hohmann Three-Dimensional Induced Polarization and Electromagnetic Modeling , 1975 .

[27]  David Pardo,et al.  A secondary field based hp-Finite Element Method for the simulation of magnetotelluric measurements , 2015, J. Comput. Sci..

[28]  Seong Kon Lee,et al.  MT2DInvMatlab - A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion , 2009, Comput. Geosci..

[29]  Alex Marcuello,et al.  First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO2 geological storage: A magnetotelluric 2D characterization , 2013 .

[30]  Weng Cho Chew,et al.  PML-FDTD in cylindrical and spherical grids , 1997 .

[31]  J. T. Weaver Mathematical methods for geo-electromagnetic induction , 1994 .

[32]  Gary D. Egbert,et al.  Data space conjugate gradient inversion for 2-D magnetotelluric data , 2007 .

[33]  Chester J. Weiss,et al.  Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example , 2005 .

[34]  M. Zhdanov,et al.  Three-dimensional inversion of multitransmitter electromagnetic data based on the localized quasi-linear approximation , 2002 .

[35]  L. Cagniard Basic theory of the magneto-telluric method of geophysical prospecting , 1953 .

[36]  J. J. Moré,et al.  Algorithms for bound constrained quadratic programming problems , 1989 .

[37]  Yongwimon Lenbury,et al.  Three-dimensional magnetotelluric inversion : data-space method , 2005 .

[38]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[39]  Alan D. Chave,et al.  A comparison of techniques for magnetotelluric response function estimation , 1989 .

[40]  K. Vozoff,et al.  Magnetotellurics: Principles and practice , 1990, Journal of Earth System Science.

[41]  Anthony T. Patera,et al.  A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .

[42]  Pierre Ladevèze,et al.  Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .

[43]  Reza Ghaedrahmati,et al.  Investigating 2-D MT inversion codes using real field data , 2014, Arabian Journal of Geosciences.

[44]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[45]  J. Coggon Electromagnetic and electrical modeling by the finite element method , 1971 .

[46]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[47]  Ralf Hartmann,et al.  Goal-Oriented A Posteriori Error Estimation for Multiple Target Functionals , 2003 .

[48]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[49]  Victor M. Calo,et al.  Fourier series expansion in a non-orthogonal system of coordinates for the simulation of 3D-DC borehole resistivity measurements , 2008 .

[50]  Alan G. Jones,et al.  RESEARCH NOTE: Improving Bahr's invariant parameters using the WAL approach , 2005 .

[51]  John F. Hermance,et al.  Least squares inversion of one-dimensional magnetotelluric data: An assessment of procedures employed by Brown University , 1986 .

[52]  Leszek Demkowicz,et al.  H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .

[53]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part I: Properties and error analysis , 1996 .

[54]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[55]  Klaus Spitzer,et al.  Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography , 2007 .

[56]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[57]  Weng Cho Chew,et al.  Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves , 1998 .

[58]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[59]  L. Hervella-Nieto,et al.  Perfectly Matched Layers for Time-Harmonic Second Order Elliptic Problems , 2010 .

[60]  Alan G. Jones,et al.  Electrical conductivity of the continental lower crust , 1992 .

[61]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[62]  A. Martí,et al.  WALDIM: A code for the dimensionality analysis of magnetotelluric data using the rotational invariants of the magnetotelluric tensor , 2009, Comput. Geosci..

[63]  van Eh Harald Brummelen,et al.  Goal‐oriented error estimation for Stokes flow interacting with a flexible channel , 2008 .

[64]  David Pardo,et al.  A self-adaptive goal-oriented hp-finite element method with electromagnetic applications. Part II: Electrodynamics , 2007 .

[65]  Rolf Rannacher,et al.  A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .

[66]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[67]  David Pardo,et al.  A goal‐oriented hp‐adaptive finite element method with electromagnetic applications. Part I: electrostatics , 2006 .

[68]  Ivo Babuška,et al.  Approximation properties of the h-p version of the finite element method , 1996 .

[69]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[70]  Toshihiro Uchida,et al.  3D magnetotelluric modeling using the T‐Ω finite‐element method , 2004 .

[71]  J. T. Smith,et al.  Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example , 1994 .

[72]  Leszek F. Demkowicz,et al.  p Interpolation Error Estimates for Edge Finite Elements of Variable Order in Two Dimensions , 2003, SIAM J. Numer. Anal..

[73]  J. Wait On the relation between telluric currents and the Earth's magnetic field , 1954 .

[74]  Tohru Mogi Three-dimensional modeling of magnetotelluric data using finite element method , 1996 .

[75]  Richard R. A. Syms,et al.  Electrical Properties of Materials , 2018, Nature.

[76]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .

[77]  Gary D. Egbert,et al.  An efficient data-subspace inversion method for 2-D magnetotelluric data , 2000 .

[78]  A. T. Price The theory of geomagnetic induction , 1973 .

[79]  Pilar Queralt,et al.  Magnetotelluric characterization of a salt diapir: a case study on Bicorb–Quesa Diapir (Prebetic Zone, SE Spain) , 2010, Journal of the Geological Society.

[80]  A. J. Ward,et al.  CALCULATING PHOTONIC GREEN'S FUNCTIONS USING A NONORTHOGONAL FINITE-DIFFERENCE TIME-DOMAIN METHOD , 1998, cond-mat/9804007.

[81]  Weerachai Siripunvaraporn,et al.  Three-Dimensional Magnetotelluric Inversion: An Introductory Guide for Developers and Users , 2011, Surveys in Geophysics.

[82]  Carlos Torres-Verdín,et al.  Two-Dimensional High-Accuracy Simulation of Resistivity Logging-While-Drilling (LWD) Measurements Using a Self-Adaptive Goal-Oriented hp Finite Element Method , 2006, SIAM J. Appl. Math..

[83]  Victor M. Calo,et al.  Fourier series expansion in a non-orthogonal system of coordinates for the simulation of 3D alternating current borehole resistivity measurements , 2008 .

[84]  Victor M. Calo,et al.  Impact of element-level static condensation on iterative solver performance , 2015, Comput. Math. Appl..

[85]  C. R. Brewitt-Taylor,et al.  On the finite difference solution of two-dimensional induction problems , 1976 .

[86]  David Pardo,et al.  Multigoal-oriented adaptivity for hp-finite element methods , 2010, ICCS.

[87]  P. Wannamaker,et al.  Three-dimensional magnetotelluric modeling using difference equations­ Theory and comparisons to integral equation solutions , 1993 .

[88]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[89]  David L.B. Jupp,et al.  Stable Iterative Methods for the Inversion of Geophysical Data , 2007 .

[90]  Patrick Joly,et al.  An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation , 2012 .

[91]  Kristel C. Meza-Fajardo,et al.  On the stability of a non-convolutional perfectly matched layer for isotropic elastic media , 2010 .

[92]  David Pardo,et al.  Preventing deadlock during anisotropic 2D mesh adaptation in hp-adaptive FEM , 2013, J. Comput. Sci..

[93]  Steven G. Johnson,et al.  Notes on Perfectly Matched Layers (PMLs) , 2021, ArXiv.

[94]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[95]  Boris Vexler,et al.  A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints , 2009, Comput. Optim. Appl..

[96]  Dmitry B. Avdeev,et al.  3D magnetotelluric inversion using a limited-memory quasi-Newton optimization , 2009 .

[97]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[98]  Yutaka Sasaki,et al.  Three-dimensional inversion of static-shifted magnetotelluric data , 2004 .

[99]  Ulrich Schmucker,et al.  Regional induction studies: A review of methods and results , 1973 .

[100]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[101]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[102]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[103]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[104]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[105]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[106]  A. K. Agarwal,et al.  Characterization of the magnetotelluric tensor in terms of its invariants , 2000 .

[107]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[108]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[109]  Philip E. Wannamaker,et al.  A stable finite element solution for two-dimensional magnetotelluric modelling , 1987 .

[110]  David Pardo,et al.  Automatically Adapted Perfectly Matched Layers for Problems with High Contrast Materials Properties , 2014, ICCS.

[111]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[112]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[113]  Hélène Barucq,et al.  Inversion of Magnetotelluric Measurements Using Multigoal Oriented hp-Adaptivity , 2013, ICCS.

[114]  David Pardo,et al.  3D hp-adaptive finite element simulations of bend, step, and magic-T electromagnetic waveguide structures , 2014, J. Comput. Sci..

[115]  W. D. Parkinson Directions of Rapid Geomagnetic Fluctuations , 1959 .

[116]  L. Demkowicz,et al.  Integration of hp-adaptivity and a two grid solver for electromagnetic problems , 2006 .

[117]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[118]  A. Raiche An Integral Equation Approach to Three-Dimensional Modelling , 1974 .

[119]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[120]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..

[121]  Alan G. Jones,et al.  Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of limitations and resolution , 2002 .

[122]  A. Goldstein Convex programming in Hilbert space , 1964 .

[123]  Leszek Demkowicz,et al.  Integration of hp-adaptivity and a two-grid solver for elliptic problems , 2006 .

[124]  Leszek Demkowicz,et al.  A Comparison Between PML, Infinite Elements and an Iterative BEM as Mesh Truncation Methods for Hp Self-Adaptive Procedures in Electromagnetics , 2012 .

[125]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[126]  Robert Schaefer,et al.  Multi-objective Hierarchic Memetic Solver for Inverse Parametric Problems , 2015, ICCS.

[127]  A. T. Price The theory of magnetotelluric methods when the source field is considered , 1962 .

[128]  W. L. Rodi,et al.  Implications of magnetotelluric modeling for the deep crustal environment in the Rio Grande rift , 1987 .

[129]  Boris Polyak,et al.  Constrained minimization methods , 1966 .

[130]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[131]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[132]  I. Babuska,et al.  Adaptive approaches and reliability estimations in finite element analysis , 1979 .

[133]  R. L. Mackie,et al.  Three-dimensional magnetotelluric modelling and inversion , 1989, Proc. IEEE.

[134]  K. Vozoff,et al.  The Magnetotelluric Method in the Exploration of Sedimentary Basins , 1972 .

[135]  Rolf Rannacher,et al.  Duality-based adaptivity in the hp-finite element method , 2003, J. Num. Math..

[136]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[137]  Juanjo Ledo,et al.  2-D Versus 3-D Magnetotelluric Data Interpretation , 2005 .

[138]  W. D. Parkinson The Influence of Continents and Oceans on Geomagnetic Variations , 1962 .

[139]  Alan G. Jones,et al.  The magnetotelluric method : theory and practice , 2012 .

[140]  J. T. Smith,et al.  Magnetotelluric inversion for minimum structure , 1988 .

[141]  G. W. Hohmann,et al.  Integral equation modeling of three-dimensional magnetotelluric response , 1981 .

[142]  Leszek Demkowicz,et al.  Fully automatic hp-adaptivity in three dimensions , 2006 .

[143]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[144]  M. Cessenat MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .

[145]  J. T. Smith,et al.  Rapid inversion of two‐ and three‐dimensional magnetotelluric data , 1991 .

[146]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[147]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[148]  K. Vozoff,et al.  8. The Magnetotelluric Method , 1991 .

[149]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[150]  C. M. Swift,et al.  On determining electrical characteristics of the deep layers of the Earth's crust , 1986 .

[151]  R. C. Bailey,et al.  Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion , 1989 .

[152]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .