An Adaptive Network Intrusion Detection Method Based on PCA and Support Vector Machines

Network intrusion detection is an important technique in computer security. However, the performance of existing intrusion detection systems (IDSs) is unsatisfactory since new attacks are constantly developed and the speed of network traffic volumes increases fast. To improve the performance of IDSs both in accuracy and speed, this paper proposes a novel adaptive intrusion detection method based on principal component analysis (PCA) and support vector machines (SVMs). By making use of PCA, the dimension of network data patterns is reduced significantly. The multi-class SVMs are employed to construct classification models based on training data processed by PCA. Due to the generalization ability of SVMs, the proposed method has good classification performance without tedious parameter tuning. Dimension reduction using PCA may improve accuracy further. The method is also superior to SVMs without PCA in fast training and detection speed. Experimental results on KDD-Cup99 intrusion detection data illustrate the effectiveness of the proposed method.