In situ TEM creation and electrical characterization of nanowire devices.

We demonstrate the observation and measurement of simple nanoscale devices over their complete lifecycle from creation to failure within a transmission electron microscope. Devices were formed by growing Si nanowires, using the vapor-liquid-solid method, to form bridges between Si cantilevers. We characterize the formation of the contact between the nanowire and the cantilever, showing that the nature of the connection depends on the flow of heat and electrical current during and after the moment of contact. We measure the electrical properties and high current failure characteristics of the resulting bridge devices in situ and relate these to the structure. We also describe processes to modify the contact and the nanowire surface after device formation. The technique we describe allows the direct analysis of the processes taking place during device formation and use, correlating specific nanoscale structural and electrical parameters on an individual device basis.

[1]  T. Nagao,et al.  Structures and electronic transport on silicon surfaces , 1999 .

[2]  Seiji Takeda,et al.  Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. , 2008, Nano letters.

[3]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[4]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[5]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[6]  Integrated silicon nanowire diodes and the effects of gold doping from the growth catalyst , 2007 .

[7]  F. Ross Controlling nanowire structures through real time growth studies , 2010 .

[8]  S. Senz,et al.  Atomically smooth p-doped silicon nanowires catalyzed by aluminum at low temperature. , 2011, ACS nano.

[9]  S. Sharma,et al.  A novel interconnection technique for manufacturing nanowire devices , 2005 .

[10]  R. Spolenak,et al.  Thermo mechanical properties and plastic deformation of gold nanolines and gold thin films , 2011 .

[11]  R. P. Anantatmula,et al.  The gold-silicon phase diagram , 1975 .

[12]  P. Gentile,et al.  Control of gold surface diffusion on si nanowires. , 2008, Nano letters.

[13]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[14]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[15]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[16]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[17]  J. Tersoff,et al.  Sawtooth faceting in silicon nanowires. , 2005, Physical review letters.

[18]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[19]  S. Kodambaka,et al.  Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. , 2006, Physical review letters.

[20]  J. Hölzl,et al.  Diffusion and solubility of gold in silicon , 1983 .

[21]  J. Sambles,et al.  The electrical resistivity of gold films , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  S. Kodambaka,et al.  Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires , 2009, Science.

[23]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[24]  R. Stanley Williams,et al.  Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces , 2004 .

[25]  Daniel S. Engstrøm,et al.  Integration, gap formation, and sharpening of III-V heterostructure nanowires by selective etching , 2010 .

[26]  K. Mølhave,et al.  Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. , 2008, Small.

[27]  Jeffrey Bokor,et al.  Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor-liquid-solid method , 2005 .

[28]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[29]  S. Ghandhi VLSI fabrication principles : sil-icon and gallium arsenide , 1994 .

[30]  Jae-Young Yu,et al.  Silicon Nanowires: Preparation, Device Fabrication, and Transport Properties , 2000 .

[31]  M. Reuter,et al.  Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. , 2009, Nano letters.

[32]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[33]  F. Ross,et al.  Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers. , 2010, Small.