Impact on hearing aid targets of measuring thresholds in dB HL versus dB SPL: El impacto en la medición de los umbrales en dB HL o en dB SPL, en las metas de un auxiliar auditivo

Audiometric measurements are traditionally made in dB HL, which by definition are specified relative to the sound pressure level (SPL) in a coupler. Real-ear dB SPL is then estimated by applying an average ear transform to the coupler value. However, individual variation in ear canal acoustics and variations in transducer placement strongly influence the dB SPL of signals arriving at the eardrum. In this paper, data from 1814 ears are presented, showing that the distribution of eardrum dB SPL for a fixed signal level varies across ears and across frequency by as much as 40 dB. The impact of this variance upon hearing aid targets computed with the NAL-NL1 fitting algorithm is examined by comparing the targets obtained from using an average transform with those obtained when audiometric data in dB SPL are obtained by applying individually measured real-ear-to-coupler difference (RECD) values to dB HL thresholds. The impact can be considerable. Sumario Tradicionalmente, las mediciones audiométricas se realizan en dB HL, que por definitión se especifican en relación con el nivel de presíón sonora (SPL) en un acoplador. Los dB SPL de oído-real se estiman, aplicando una transformatión promedio al oído, en relación con el valor del acoplador. Sin embargo, las variaciones individuales en la acústica del conducto auditivo y las variaciones en la colocación del transductor influyen fuertemente en las señales en dB SPL, que llegan a la membrana timpánica. En este artículo, se presenta la información de 1814 oídos, mostrando que la distribución de los dB SPL en el tímpano, para un nível fijo de señal, varía en los diferentes oídos y en las diferentes frecuencias hasta en 40 dB. Se examinó el impacto de esta variación sobre las metas en los auxiliares auditivos, estimadas con el algoritmo de adaptatión NAL-NL 1. Este análisis se realizó comparando los valores meta logrados utilizando una transformación promedio, con aquellos datos audiométricos en dB SPL, obtenidos aplicando individualmente las mediciones de la diferencia oído real/acoplador (RECD) a los umbrales en dB HL. El impacto puede ser considerable.

[1]  L G Potts,et al.  Differences and intersubject variability of loudness discomfort levels measured in sound pressure level and hearing level for TDH-50P and ER-3A earphones. , 1997, Journal of the American Academy of Audiology.

[2]  D. Dirks,et al.  Probe-determined hearing-aid gain compared to functional and coupler gains. , 1985, Journal of speech and hearing research.

[3]  R E Jirsa,et al.  Relationship of acoustic gain to aided threshold improvement in children. , 1978, The Journal of speech and hearing disorders.

[4]  Jozef J. Zwislocki,et al.  Sound Pressure Distribution in the Outer Ear , 1972 .

[5]  D D Dirks,et al.  Acoustics of ear canal measurement of eardrum SPL in simulators. , 1986, The Journal of the Acoustical Society of America.

[6]  J. Goebel,et al.  Intersubject variability of real-ear sound pressure level: conventional and insert earphones. , 1994, Journal of the American Academy of Audiology.

[7]  C D Geisler,et al.  Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal. , 1990, The Journal of the Acoustical Society of America.

[8]  Hawkins Db,et al.  Comparisons among SPLs in real ears, 2 cm3 and 6 cm3 couplers. , 1990 .

[9]  R. M. Sachs,et al.  Anthropometric manikin for acoustic research. , 1975, The Journal of the Acoustical Society of America.

[10]  P G Stelmachowicz,et al.  Probe-tube microphone measures of ear-canal sound pressure levels in infants and children. , 1989, Ear and hearing.

[11]  N P Erber Body-baffle and real-ear effects in the selection of hearing aids for deaf children. , 1973, The Journal of speech and hearing disorders.

[12]  G Keidser,et al.  NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and comparisons with other procedures. , 2001, Journal of the American Academy of Audiology.

[13]  M. Maurizi,et al.  The external ear and the tympanic membrane. A three-dimensional study. , 1991, Scandinavian audiology.

[14]  S. E. Voss,et al.  Middle Ear Pathology Can Affect the Ear‐Canal Sound Pressure Generated by Audiologic Earphones , 2000, Ear and hearing.

[15]  D D Dirks,et al.  Basic Acoustic Considerations of Ear Canal: Probe Measurements , 1987, Ear and hearing.

[16]  R C Seewald,et al.  Validity and Repeatability of Level‐Independent HL to SPL Transforms , 1998, Ear and hearing.

[17]  C V Pavlovic,et al.  Transfer functions and correction factors used in hearing aid evaluation and research. , 1989, Ear and hearing.

[18]  E. Shaw,et al.  Earcanal pressure generated by circumaural and supraaural earphones. , 1966, The Journal of the Acoustical Society of America.

[19]  D L Zelisko,et al.  Signal delivery/real ear measurement system for hearing aid selection and fitting. , 1992, Ear and hearing.

[20]  P G Stelmachowicz,et al.  Probe-tube microphone measures in hearing-impaired children and adults. , 1988, Ear and hearing.

[21]  D. Dirks,et al.  Optical method for measurement of ear canal length. , 1985, The Journal of the Acoustical Society of America.

[22]  S Fikret-Pasa,et al.  Individualized correction factors in the preselection of hearing aids. , 1992, Journal of speech and hearing research.

[23]  J J Rosowski,et al.  Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones. , 2000, The Journal of the Acoustical Society of America.

[24]  C M Rankovic,et al.  Potential benefits of adaptive frequency-gain characteristics for speech reception in noise. , 1992, The Journal of the Acoustical Society of America.