Selective trapping and manipulation of microscale objects using mobile microvortices.

Controlled manipulation of individual micro- and nanoscale objects requires the use of trapping forces that can be focused and translated with high spatial and time resolution. We report a new strategy that uses the flow of mobile microvortices to trap and manipulate single objects in fluid with essentially no restrictions on their material properties. Fluidic trapping forces are generated toward the center of microvortices formed by magnetic microactuators, that is, rotating nanowire or self-assembled microbeads, actuated by a weak rotating magnetic field (|B|< 5 mT). We demonstrate precise manipulation of single microspheres and microorganisms near a solid surface in water.

[1]  C. Alves,et al.  Density results using Stokeslets and a method of fundamental solutions for the Stokes equations , 2004 .

[2]  Francis Crick,et al.  The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental , 1950 .

[3]  Li Zhang,et al.  Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. , 2010, ACS nano.

[4]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[5]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[6]  T. Mayer,et al.  Synchronous electrorotation of nanowires in fluid. , 2006, Nano letters.

[7]  Andrew M Wo,et al.  Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. , 2008, Analytical chemistry.

[8]  D. Grier A revolution in optical manipulation , 2003, Nature.

[9]  Vahid Sandoghdar,et al.  Geometry-induced electrostatic trapping of nanometric objects in a fluid , 2010, Nature.

[10]  Adam E Cohen,et al.  Electrokinetic trapping at the one nanometer limit , 2011, Proceedings of the National Academy of Sciences.

[11]  P. Saffman The lift on a small sphere in a slow shear flow , 1965, Journal of Fluid Mechanics.

[12]  K. A. Brown,et al.  Triaxial AFM probes for noncontact trapping and manipulation. , 2011, Nano letters.

[13]  D. Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton , 1993 .

[14]  Gregory T. Roman,et al.  Single-cell manipulation and analysis using microfluidic devices , 2006, Analytical and bioanalytical chemistry.

[15]  Maria Dimaki,et al.  Manipulation of biological samples using micro and nano techniques. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[16]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[17]  Quan Wang,et al.  An Adaptive Anti-Brownian ELectrokinetic trap with real-time information on single-molecule diffusivity and mobility. , 2011, ACS nano.

[18]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[19]  Barry R Lutz,et al.  Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. , 2006, Analytical chemistry.

[20]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[21]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[22]  Jonathan D Posner,et al.  Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. , 2008, Journal of the American Chemical Society.

[23]  Daniel Ahmed,et al.  Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). , 2008, Lab on a chip.

[24]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[25]  Daniel T. Chiu,et al.  Microfluidic systems: High radial acceleration in microvortices , 2003, Nature.

[26]  David Erickson,et al.  Nanomanipulation using near field photonics. , 2011, Lab on a chip.

[27]  A. Alexander-Katz,et al.  Controlled surface-induced flows from the motion of self-assembled colloidal walkers , 2009, Proceedings of the National Academy of Sciences.

[28]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[29]  Aaron R Wheeler,et al.  Microfluidic device for single-cell analysis. , 2003, Analytical chemistry.

[30]  J. Hoogenboom,et al.  Patterning surfaces with colloidal particles using optical tweezers , 2002 .

[31]  H. A. Pohl,et al.  Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields , 1978 .

[32]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[33]  Jacob W J Kerssemakers,et al.  Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments , 2010, Nature Methods.

[34]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.