Integrating the production functions of Liebig, Michaelis-Menten, Mitscherlich and Liebscher into one system dynamics model

Abstract Any agricultural production process is characterized by input—output relations. In this paper we show that the production functions of Liebig, Mitscherlich and Liebscher for the relation between nutrient supply and crop production can be regarded as special variants of one ‘integrated model’. The model is elaborated for two nutrients, nitrogen and phosphorus, and is based on the Michaelis-Menten hyperbolic equation. This basic equation has two main terms and one multiplicative interaction term. The parameter values determine which one of the aforementioned functions is generated. ‘Greenwood's variant of the Michaelis-Menten function’ is approached if the main terms dominate. ‘De Wit's variant of the Mitscherlich function’ is approached if the multiplicative term dominates. Liebig's function emerges from any of these variants if nutrient supply is constrained to such an extent that nutrient uptake continually exhausts the nutrient stock. The ‘Liebscher variant’ — considered the most appropriate for most empirical situations — is intermediate between those of Liebig, Michaelis-Menten and ‘De Wit's Mitscherlich’, and can be obtained by parameter calibration. Generally, these functions result in ‘decreasing marginal returns’ with increasing nutrient supply. However, if interacting nutrients are supplied in precisely the required proportion, the variant with a multiplicative term does show ‘increasing marginal returns’, but only in conditions of low nutrient supply rates, low nutrient affinities and / or high nutrient losses.

[1]  N. McRoberts Ecology and integrated farming systems: Ed. by D. M. Glen, M. P. Greaves and H. M. Anderson. ISBN 0 471 95534-5. (329 pp; £49.00) Chichester, UK, John Wiley & Sons , 1996 .

[2]  J. Goudriaan,et al.  Simulation of ecological processes. 2nd. ed , 1978 .

[3]  Ehrenberg E. A. Mitscherlich. Die Bestimmung des Düngungsbedürfnisses des Bodens. Dritte, neubearbeitete Auflage. 119 Seiten mit 11 Textabbildungen. Berlin, Verlag Paul Parey, 1930. Preis 4,80 RM , 1931 .

[4]  T. M. Humphrey Algebraic Production Functions and Their Uses before Cobb-Douglas , 1997 .

[5]  J. Goudriaan,et al.  A family of saturation type curves, especially in relation to photosynthesis , 1979 .

[6]  J. Goudriaan,et al.  Simulation of Ecological Processes , 1978 .

[7]  G. Nijland,et al.  The relation between crop yield, nutrient uptake, nutrient surplus and nutrient application , 1997 .

[8]  D. J. Greenwood,et al.  A theory for fertilizer response , 1971, The Journal of Agricultural Science.

[9]  C. T. de Wit,et al.  Resource use efficiency in agriculture , 1992 .

[10]  R. Kho On crop production and the balance of available resources , 2000 .

[11]  George P. Richardson,et al.  Introduction to System Dynamics Modeling with DYNAMO , 1981 .

[12]  C. T. de Wit,et al.  Resource use analysis in agriculture: a struggle for interdisciplinarity. , 1994 .

[13]  E. Mitscherlich Die Bestimmung des Düngerbedürfnisses des Bodens , 1924 .

[14]  Leo Stroosnijder,et al.  The future of the land. Mobilising and integrating knowledge for land use options. , 1994 .

[15]  J. Liebig Die Grundsätze der Agricultur-Chemie : mit Rücksicht auf die in England angestellten Untersuchungen , 1855 .

[16]  L. Firbank,et al.  Ecology and Integrated Farming Systems: Proceedings of the 13th Long Ashton International Symposium. , 1996 .

[17]  Quirino Paris,et al.  The von Liebig Hypothesis , 1992 .