Design and Performance of a Bidirectional Isolated DC–DC Converter for a Battery Energy Storage System

This paper describes the design and performance of a 6-kW, full-bridge, bidirectional isolated dc-dc converter using a 20-kHz transformer for a 53.2-V, 2-kWh lithium-ion (Li-ion) battery energy storage system. The dc voltage at the high-voltage side is controlled from 305 to 355 V, as the battery voltage at the low-voltage side (LVS) varies from 50 to 59 V. The maximal efficiency of the dc-dc converter is measured to be 96.0% during battery charging, and 96.9% during battery discharging. Moreover, this paper analyzes the effect of unavoidable dc-bias currents on the magnetic-flux saturation of the transformer. Finally, it provides the dc-dc converter loss breakdown with more focus on the LVS converter.

[1]  Herbert Rudolf Weischedel,et al.  A Symmetry Correcting Pulsewidth Modulator for Power Conditioning Applications , 1973 .

[2]  L. Zhu,et al.  A Novel Soft-Commutating Isolated Boost Full-Bridge ZVS-PWM DC–DC Converter for Bidirectional High Power Applications , 2006, IEEE Transactions on Power Electronics.

[3]  T. Oomori,et al.  Successful Development of 1.2 kV 4H-SiC MOSFETs with the Very Low On-Resistance of 5 mΩcm2 , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[4]  Jing Sun,et al.  Power Flow Characterization of a Bidirectional Galvanically Isolated High-Power DC/DC Converter Over a Wide Operating Range , 2010, IEEE Transactions on Power Electronics.

[5]  P.K. Sen,et al.  Advancement of energy storage devices and applications in electrical power system , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[6]  Hirofumi Akagi,et al.  A 6-kW, 2-kWh Lithium-Ion battery energy storage system using a bidirectional isolated DC-DC converter , 2010, The 2010 International Power Electronics Conference - ECCE ASIA -.

[7]  L. Zhu,et al.  A novel soft-commutating isolated boost full-bridge ZVS-PWM DC-DC converter for bidirectional high power applications , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[8]  D.M. Divan,et al.  Performance characterization of a high power dual active bridge DC/DC converter , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[9]  Haihua Zhou,et al.  Hybrid Modulation for Dual-Active-Bridge Bidirectional Converter With Extended Power Range for Ultracapacitor Application , 2009 .

[10]  H. Akagi,et al.  Voltage Balancing of a 320-V, 12-F Electric Double-Layer Capacitor Bank Combined With a 10-kW Bidirectional Isolated DC--DC Converter , 2008, IEEE Transactions on Power Electronics.

[11]  H. Akagi,et al.  A Bidirectional Isolated DC–DC Converter as a Core Circuit of the Next-Generation Medium-Voltage Power Conversion System , 2007, IEEE Transactions on Power Electronics.

[12]  R.W. De Doncker,et al.  High-power galvanically isolated DC/DC converter topology for future automobiles , 2003, IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03..

[13]  D.M. Divan,et al.  A three-phase soft-switched high power density DC/DC converter for high power applications , 1988, Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting.

[14]  Johann W. Kolar,et al.  Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application , 2010, IEEE Transactions on Industrial Electronics.

[15]  Jan Abraham Ferreira,et al.  A sensor for balancing flux in converters with a high frequency transformer link , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[16]  D. Vinnikov,et al.  Middle-frequency isolation transformer design issues for the high-voltage DC/DC converter , 2008, 2008 IEEE Power Electronics Specialists Conference.

[17]  J.L. Duarte,et al.  Transformer-Coupled Multiport ZVS Bidirectional DC–DC Converter With Wide Input Range , 2008, IEEE Transactions on Power Electronics.

[18]  J.W. Kolar,et al.  An Isolated Three-Port Bidirectional DC-DC Converter With Decoupled Power Flow Management , 2008, IEEE Transactions on Power Electronics.

[19]  Charles R. Sullivan,et al.  Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters , 2002, 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proceedings..

[20]  H. Akagi,et al.  A Bidirectional DC–DC Converter for an Energy Storage System With Galvanic Isolation , 2007, IEEE Transactions on Power Electronics.