Exponential BPS Graphs and D Brane Counting on Toric Calabi-Yau Threefolds: Part I

We study BPS spectra of D-branes on local Calabi-Yau threefolds $$\mathcal {O}(-p)\oplus \mathcal {O}(p-2)\rightarrow \mathbb {P}^1$$ O ( - p ) ⊕ O ( p - 2 ) → P 1 with $$p=0,1$$ p = 0 , 1 , corresponding to $$\mathbb {C}^3/\mathbb {Z}_{2}$$ C 3 / Z 2 and the resolved conifold. Nonabelianization for exponential networks is applied to compute directly unframed BPS indices counting states with D2 and D0 brane charges. Known results on these BPS spectra are correctly reproduced by computing new types of BPS invariants of 3d-5d BPS states, encoded by nonabelianization, through their wall-crossing. We also develop the notion of exponential BPS graphs for the simplest toric examples, and show that they encode both the quiver and the potential associated to the Calabi-Yau via geometric engineering.

[1]  J. Manschot,et al.  A fixed point formula for the index of multi-centered N = 2 black holes , 2011 .

[2]  M theory, topological strings and spinning black holes , 1999, hep-th/9910181.

[3]  V. Bouchard,et al.  Topological recursion and mirror curves , 2011, 1105.2052.

[4]  G. Moore,et al.  Wall-crossing, Hitchin Systems, and the WKB Approximation , 2009, 0907.3987.

[5]  G. Moore,et al.  Spectral Networks , 2012, 1204.4824.

[6]  R. Gopakumar,et al.  On the Gauge Theory/Geometry Correspondence , 1998, hep-th/9811131.

[7]  G. Moore,et al.  Wall-crossing in coupled 2d-4d systems , 2011, 1103.2598.

[8]  C. Vafa,et al.  On Classification of N=2 Supersymmetric Theories, (e-mail uncorrupted version) , 1992, hep-th/9211097.

[9]  D. Auroux,et al.  Mirror symmetry for weighted projective planes and their noncommutative deformations , 2004, math/0404281.

[10]  S. Gukov,et al.  Vortex Counting and Lagrangian 3-Manifolds , 2010, 1006.0977.

[11]  David,et al.  Topological Strings* , 1988 .

[12]  Sanefumi Moriyama,et al.  Non-perturbative effects and the refined topological string , 2013, 1306.1734.

[13]  Self-dual strings and N = 2 supersymmetric field theory , 1996, hep-th/9604034.

[14]  Statistical Entropy of Four-Dimensional Extremal Black Holes. , 1996, Physical review letters.

[15]  Pietro Longhi,et al.  ADE spectral networks and decoupling limits of surface defects , 2016, 1611.09409.

[16]  T-structures on some local Calabi–Yau varieties , 2005, math/0502050.

[17]  L. Alday,et al.  Loop and surface operators in $ \mathcal{N} = 2 $ gauge theory and Liouville modular geometry , 2009, 0909.0945.

[18]  J. Manschot,et al.  Multiple D3-Instantons and Mock Modular Forms I , 2016, Communications in Mathematical Physics.

[19]  C. Vafa,et al.  Topological Strings, D-Model, and Knot Contact Homology , 2013, 1304.5778.

[20]  C. Vafa,et al.  Disk Instantons, Mirror Symmetry and the Duality Web , 2001, hep-th/0105045.

[21]  Pietro Longhi,et al.  Spectral Networks with Spin , 2014, 1408.0207.

[22]  S. Alexandrov Rank $N$ Vafa–Witten invariants, modularity and blow-up , 2020, Advances in Theoretical and Mathematical Physics.

[23]  The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli , 2002, math/0204059.

[24]  T. S. Tsun Electric–Magnetic Duality , 2006 .

[25]  A. Sinkovics,et al.  Instantons, Quivers and Noncommutative Donaldson-Thomas Theory , 2010, 1012.2725.

[26]  Cumrun Vafa,et al.  Mirror Symmetry , 2000, hep-th/0002222.

[27]  S. Yamaguchi,et al.  Wall-crossing of D4-D2-D0 and flop of the conifold , 2010, 1007.2731.

[28]  Pietro Longhi,et al.  Exploring 5d BPS Spectra with Exponential Networks , 2018, Annales Henri Poincaré.

[29]  C. Vafa,et al.  BPS Quivers and Spectra of Complete $${\mathcal{N} = 2}$$N=2 Quantum Field Theories , 2011, 1109.4941.

[30]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .

[31]  More about vanishing cycles and mutation , 2000, math/0010032.

[32]  Extremal transitions and five-dimensional supersymmetric field theories , 1996, hep-th/9609070.

[33]  J. Manschot BPS invariants of $\CN=4$ gauge theory on Hirzebruch surfaces , 2012 .

[34]  B. Pioline,et al.  Attractor flow trees, BPS indices and quivers , 2018, Advances in Theoretical and Mathematical Physics.

[35]  Non-spherical horizons, I , 1998, hep-th/9810201.

[36]  J. Manschot,et al.  S-Duality and Refined BPS Indices , 2019, Communications in Mathematical Physics.

[37]  Small instantons, del Pezzo surfaces and type I′ theory , 1996, hep-th/9609071.

[38]  A Strong coupling test of S duality , 1994, hep-th/9408074.

[39]  S. Yamaguchi,et al.  Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities , 2013, 1304.6724.

[40]  A. Sheshmani,et al.  Generalized Donaldson-Thomas Invariants of 2-Dimensional sheaves on local P^2 , 2013, 1309.0056.

[41]  W. Nahm On electric-magnetic duality , 1997 .

[42]  L. Göttsche,et al.  Virtual Refinements of the Vafa–Witten Formula , 2017, Communications in Mathematical Physics.

[43]  D-branes on Calabi-Yau manifolds and helices , 2000, hep-th/0010217.

[44]  Sheldon Katz,et al.  Computation of Superpotentials for D-Branes , 2004, hep-th/0412209.

[45]  J. Manschot BPS Invariants of Semi-Stable Sheaves on Rational Surfaces , 2011, 1109.4861.

[46]  Solitons and helices: The search for a math-physics bridge , 1994, hep-th/9408133.

[47]  C. Vafa,et al.  A New supersymmetric index , 1992, hep-th/9204102.

[48]  J. Manschot,et al.  From black holes to quivers , 2012, 1207.2230.

[49]  X. Yin,et al.  The M5-Brane Elliptic Genus: Modularity and BPS States , 2006, hep-th/0607010.

[50]  C. Vafa,et al.  Disk Instantons, Mirror Symmetry and the Duality Web , 2002 .

[51]  Rak-Kyeong Seong,et al.  Brane brick models in the mirror , 2016, 1609.01723.

[52]  Pietro Longhi,et al.  Wild wall crossing and BPS giants , 2013, 1305.5454.

[53]  Ben Young,et al.  Computing a pyramid partition generating function with dimer shuffling , 2007, J. Comb. Theory, Ser. A.

[54]  S. Cecotti The quiver approach to the BPS spectrum of a 4d N=2 gauge theory , 2012, 1212.3431.

[55]  G. Moore,et al.  Categorical wall-crossing in Landau–Ginzburg models , 2020, Beijing Journal of Pure and Applied Mathematics.

[56]  J. Walcher,et al.  Exponential networks and representations of quivers , 2016, 1611.06177.

[57]  C. Vafa,et al.  Topological-anti-topological fusion , 1991 .

[58]  Geometric engineering of quantum field theories , 1996, hep-th/9609239.

[59]  R. Pandharipande,et al.  Gromov–Witten theory and Donaldson–Thomas theory, I , 2003, Compositio Mathematica.

[60]  C. Vafa,et al.  On classification ofN=2 supersymmetric theories , 1993 .

[61]  Jie Gu,et al.  Non-perturbative approaches to the quantum Seiberg-Witten curve , 2019, Journal of High Energy Physics.

[62]  D. Gaiotto Preprint Typeset in Jhep Style -hyper Version N = 2 Dualities , 2022 .

[63]  C. Vafa,et al.  tt* geometry in 3 and 4 dimensions , 2013, 1312.1008.

[64]  F. Denef Quantum quivers and Hall / hole halos , 2002, hep-th/0206072.

[65]  P. Seidel Vanishing Cycles and Mutation , 2000, math/0007115.

[66]  L. Gottsche,et al.  Refined $\mathrm{SU}(3)$ Vafa-Witten invariants and modularity , 2018, 1808.03245.

[67]  F. Saueressig,et al.  D-instantons and twistors , 2008, 0812.4219.

[68]  D-Branes And Mirror Symmetry , 2000, hep-th/0005247.

[69]  S. Kachru,et al.  A comment on 4d and 5d BPS states , 2018, Journal of High Energy Physics.

[70]  T. Bridgeland Scattering diagrams, Hall algebras and stability conditions , 2016, Algebraic Geometry.

[71]  The Spectrum of $BPS$ Branes on a Noncompact Calabi-Yau , 2000, hep-th/0003263.

[72]  S. Zwegers Mock Theta Functions , 2008, 0807.4834.

[73]  C. Vafa,et al.  M-theory and a topological string duality , 2006, hep-th/0602087.

[74]  A. Sheshmani Hilbert schemes, Donaldson–Thomas theory, Vafa–Witten and Seiberg–Witten theory , 2019, Notices of the International Congress of Chinese Mathematicians.

[75]  C. Vafa,et al.  $\mathcal{N} = 2$ quantum field theories and their BPS quivers , 2011, 1112.3984.

[76]  Miranda C. N. Cheng,et al.  A Farey Tail for Attractor Black Holes , 2006, hep-th/0608059.

[77]  The refined topological vertex , 2007, hep-th/0701156.

[78]  G. Moore,et al.  Wall crossing in local Calabi Yau manifolds , 2008, 0810.4909.

[79]  Pietro Longhi Wall Crossing Invariants from Spectral Networks , 2016, 1611.00150.

[80]  N. Seiberg,et al.  Surface defects and resolvents , 2013, 1307.2578.

[81]  Edward Witten,et al.  Phases of N = 2 theories in two dimensions , 1993, hep-th/9301042.

[82]  Peacock patterns and resurgence in complex Chern-Simons theory , 2020, 2012.00062.

[83]  Richard P. Thomas,et al.  Vafa-Witten invariants for projective surfaces I: stable case , 2017, Journal of Algebraic Geometry.

[84]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[85]  J. Manschot,et al.  Indefinite theta series and generalized error functions , 2016, Selecta Mathematica.

[86]  C. Bachas on D-branes , 1999 .

[87]  J. Manschot BPS invariants of N=4 gauge theory on a surface , 2011, 1103.0012.

[88]  Pietro Longhi,et al.  ADE spectral networks , 2016, 1601.02633.

[89]  E. Witten,et al.  Algebra of the Infrared: String Field Theoretic Structures in Massive ${\cal N}=(2,2)$ Field Theory In Two Dimensions , 2015, 1506.04087.

[90]  R. C. Mclean Deformations of calibrated submanifolds , 1998 .

[91]  G. Moore,et al.  Geometric engineering of (framed) BPS states , 2013, 1301.3065.

[92]  Jie Gu,et al.  The Resurgent Structure of Quantum Knot Invariants , 2020, Communications in Mathematical Physics.

[93]  A. Klemm,et al.  Seiberg–Witten theory and matrix models , 2008, 0810.4944.

[94]  Pietro Longhi,et al.  BPS graphs: from spectral networks to BPS quivers , 2017, Journal of High Energy Physics.

[95]  BPS states and algebras from quivers , 2000, hep-th/0006189.

[96]  Yan Soibelman,et al.  Stability structures, motivic Donaldson-Thomas invariants and cluster transformations , 2008, 0811.2435.

[97]  S. Yau,et al.  Localized Donaldson-Thomas theory of surfaces , 2017, American Journal of Mathematics.

[98]  J. Manschot,et al.  On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants , 2013, Journal of High Energy Physics.

[99]  M. Mariño,et al.  Instanton Effects and Quantum Spectral Curves , 2013, 1308.6485.

[100]  Yinan Song,et al.  A theory of generalized Donaldson–Thomas invariants , 2008, 0810.5645.

[101]  A. Okounkov,et al.  Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds , 2008, 0809.3976.

[102]  D. Gaiotto Surface operators in $ \mathcal{N} $ = 2 4d gauge theories , 2009, 0911.1316.

[103]  C. Doran,et al.  Vertical D4–D2–D0 Bound States on K3 Fibrations and Modularity , 2016, 1601.04030.

[104]  X. Yin,et al.  Examples of M5-Brane Elliptic Genera , 2007, hep-th/0702012.

[105]  G. Moore,et al.  Split states, entropy enigmas, holes and halos , 2007, hep-th/0702146.

[106]  N. Seiberg,et al.  Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994 .

[107]  -. Max-Planck,et al.  M. Theory , 1998 .

[108]  J. Manschot,et al.  Wall crossing from Boltzmann black hole halos , 2010, 1011.1258.

[109]  Five dimensional gauge theories and relativistic integrable systems , 1996, hep-th/9609219.

[110]  Amin Gholampour,et al.  Sheaves on weighted projective planes and modular forms , 2012, 1209.3922.

[111]  A. Sheshmani,et al.  Donaldson-Thomas Invariants of 2-Dimensional sheaves inside threefolds and modular forms , 2013, 1309.0050.

[112]  S. Mozgovoy Invariants of moduli spaces of stable sheaves on ruled surfaces , 2013, 1302.4134.

[113]  E. Witten,et al.  Superconformal field theory on threebranes at a Calabi-Yau singularity , 1998, hep-th/9807080.

[114]  G. Moore,et al.  Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory , 2008, 0807.4723.

[115]  S. Cecotti,et al.  Y-systems, Q-systems, and 4D N=2?> supersymmetric QFT , 2014, 1403.7613.

[116]  J. Manschot,et al.  A fixed point formula for the index of multi-centered $ \mathcal{N} = 2 $ black holes , 2011, 1103.1887.

[117]  M. Frau,et al.  Surface operators, chiral rings and localization in N$$ \mathcal{N} $$ =2 gauge theories , 2017, 1707.08922.

[118]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[119]  G. Bonelli,et al.  BPS Quivers of Five-Dimensional SCFTs, Topological Strings and q-Painlevé Equations , 2020, Annales Henri Poincaré.