A chromosome-scale assembly reveals chromosomal aberrations and exchanges generating genetic diversity in Coffea arabica germplasm

[1]  A. Davis,et al.  The re-emergence of Liberica coffee as a major crop plant. , 2022, Nature plants.

[2]  O. Honnay,et al.  Genetic composition and diversity of Arabica coffee in the crop’s centre of origin and its impact on four major fungal diseases , 2022, Molecular ecology.

[3]  Qing‐Feng Wang,et al.  Whole-genome resequencing of Coffea arabica L. (Rubiaceae) genotypes identify SNP and unravels distinct groups showing a strong geographical pattern , 2022, BMC plant biology.

[4]  R. Guyot,et al.  An 82 bp tandem repeat family typical of 3' non-coding end of Gypsy/TAT LTR retrotransposons is conserved in Coffea spp. pericentromeres. , 2021, Genome.

[5]  L. C. Cintra,et al.  Large-scale prospection of genes on caffeine-free Coffea arabica plants – Discovery of novel markers associated with development and secondary metabolism , 2021 .

[6]  Mitchell R. Vollger,et al.  StainedGlass: Interactive visualization of massive tandem repeat structures with identity heatmaps , 2021, bioRxiv.

[7]  Wei Zhao,et al.  A comprehensive annotation dataset of intact LTR retrotransposons of 300 plant genomes , 2021, Scientific data.

[8]  Aaron M. Streets,et al.  Complete genomic and epigenetic maps of human centromeres , 2021, bioRxiv.

[9]  M. Morgante,et al.  Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression , 2021, The Plant journal : for cell and molecular biology.

[10]  K. Ye,et al.  High-quality Arabidopsis thaliana Genome Assembly with Nanopore and HiFi Long Reads , 2021, bioRxiv.

[11]  M. Schatz,et al.  The genetic and epigenetic landscape of the Arabidopsis centromeres , 2021, bioRxiv.

[12]  L. Mueller,et al.  The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago , 2021, Scientific Reports.

[13]  W. Solano,et al.  Unveiling a unique genetic diversity of cultivated Coffea arabica L. in its main domestication center: Yemen , 2021, Genetic Resources and Crop Evolution.

[14]  Shanlin Liu,et al.  Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore , 2020, GigaScience.

[15]  Mario Stanke,et al.  BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database , 2020, bioRxiv.

[16]  G. Valle,et al.  A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm , 2020, Scientific Reports.

[17]  L. Mao,et al.  A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy , 2020, BMC Plant Biology.

[18]  Yuzhou Long,et al.  Resequencing 93 accessions of coffee unveils independent and parallel selection during Coffea species divergence , 2020, Plant Molecular Biology.

[19]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[20]  K. Schneeberger,et al.  SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies , 2019, Genome Biology.

[21]  Thomas Peterson,et al.  Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline , 2019, Genome Biology.

[22]  Liisa Holm,et al.  PANNZER2: a rapid functional annotation web server , 2018, Nucleic Acids Res..

[23]  G. Copenhaver,et al.  Meiotic Recombination: Mixing It Up in Plants. , 2018, Annual review of plant biology.

[24]  A. Furtado,et al.  Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content , 2018, Plant biotechnology journal.

[25]  L. Mueller,et al.  Structure and Distribution of Centromeric Retrotransposons at Diploid and Allotetraploid Coffea Centromeric and Pericentromeric Regions , 2018, Front. Plant Sci..

[26]  Detlef Weigel,et al.  High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell , 2018, Nature Communications.

[27]  John K. McCooke,et al.  A chromosome conformation capture ordered sequence of the barley genome , 2017, Nature.

[28]  M. Morgante,et al.  Reduction of heterozygosity (ROH) as a method to detect mosaic structural variation , 2017, Plant biotechnology journal.

[29]  S. Koren,et al.  Scaffolding of long read assemblies using long range contact information , 2016, BMC Genomics.

[30]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[31]  D. Severac,et al.  Inter-genomic DNA Exchanges and Homeologous Gene Silencing Shaped the Nascent Allopolyploid Coffee Genome (Coffea arabica L.) , 2016, G3: Genes, Genomes, Genetics.

[32]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[33]  M. Mangeas,et al.  Shift in precipitation regime promotes interspecific hybridization of introduced Coffea species , 2016, Ecology and evolution.

[34]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[35]  E. Déchamp,et al.  Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica , 2015, Plant Cell, Tissue and Organ Culture (PCTOC).

[36]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[37]  Jayarama,et al.  The coffee genome provides insight into the convergent evolution of caffeine biosynthesis , 2014, Science.

[38]  Marc W. Schmid,et al.  Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. , 2014, Molecular cell.

[39]  D. Severac,et al.  Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. , 2013, The New phytologist.

[40]  Angel Amores,et al.  Stacks: an analysis tool set for population genomics , 2013, Molecular ecology.

[41]  C. R. Carvalho,et al.  Following the track of “Híbrido de Timor” origin by cytogenetic and flow cytometry approaches , 2013, Genetic Resources and Crop Evolution.

[42]  J. Simpson,et al.  High Genetic and Epigenetic Stability in Coffea arabica Plants Derived from Embryogenic Suspensions and Secondary Embryogenesis as Revealed by AFLP, MSAP and the Phenotypic Variation Rate , 2013, PloS one.

[43]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[44]  J. Schein,et al.  ABySS: a parallel assembler for short read sequence data. , 2009, Genome research.

[45]  T. Petes,et al.  A Fine-Structure Map of Spontaneous Mitotic Crossovers in the Yeast Saccharomyces cerevisiae , 2009, PLoS genetics.

[46]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[47]  S. Biggins,et al.  Centromere identity is specified by a single centromeric nucleosome in budding yeast , 2007, Proceedings of the National Academy of Sciences.

[48]  Steven Salzberg,et al.  Identifying bacterial genes and endosymbiont DNA with Glimmer , 2007, Bioinform..

[49]  P. Mazzafera,et al.  Plant biochemistry: A naturally decaffeinated arabica coffee , 2004, Nature.

[50]  OUP accepted manuscript , 2022, Annals Of Botany.

[51]  M. Combes,et al.  Single-locus inheritance in the allotetraploid Coffea arabica L. and interspecific hybrid C. arabica x C. canephora. , 2000, The Journal of heredity.

[52]  S. Dussert,et al.  Molecular analysis of introgressive breeding in coffee (Coffea arabica L.) , 2000, Theoretical and Applied Genetics.

[53]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[54]  C. A. Pinto-Maglio,et al.  Pachytene chromosome morphology in Coffea L. II. C. arabica L. complement , 1998 .

[55]  I. Amit,et al.  Supporting Online Material Materials and Methods Som Text Comprehensive Mapping of Long-range Interactions Reveals Folding Principles of the Human Genome , 2022 .

[56]  Heng Li,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .